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CHAPTER 1: GENERAL INTRODUCTION 

Chemistry is a field of great breadth and variety. It is this diversity that makes for 

both an interesting and challenging field. My interests have spanned three major areas of 

theoretical chemistry: applications, method development, and method evaluation. The topics 

presented in this thesis are as follows: (1) a multi-reference study of the geometries and 

relative energies of four atom silicon carbide clusters in the gas phase; (2) the reaction of 

acetylene on the Si(100)-(2xl) surface; (3) an improvement to the Effective Fragment 

Potential (EFP) solvent model to enable the study of reactions in both aqueous and 

nonaqueous solution; and (4) an evaluation of the size consistency of Multireference 

Perturbation Theory (MRPT). In the following section, I briefly discuss two topics central to, 

and present throughout, this thesis: Multi-reference methods and Quantum Mechanics / 

Molecular Mechanics (QM/MM) methods. 

Computational section 

a. Multi-Reference Methods: 

When molecular bonding cannot be described by one simple Lewis dot structure, that is, 

several resonance structures are required, a single configuration or single reference wave 

function is no longer appropriate, since each Lewis structure corresponds to a different 

arrangement of electrons (electronic configuration). In such cases, the use of many 

configurations, or a multi-reference wave function, is demanded. 

The exact wave function is provided by full configuration interaction (Full-CI)1, which 

includes all possible excitations of electrons. This approach gives the exact energy for a 

chemical system within a given atomic basis set. While this is the most reliable method 

available, it is impractical in all but the smallest cases since the computational effort grows 

faclorially with the size of the system. 

MCSCF. Fortunately, many chemical situations are dominated by a handful of important 

configurations. However, the suitability of the chosen configurations is critically dependent 

on the quality of the orbitals used to construct them. The multi-configuration self-consistent 

field (MCSCF) wave function is the most reliable method in these situations since it permits 
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both the orbital s and the CI coefficients to be optimized together. Two further problems arise 

when specifying the configurational space for a problem: 1) it may be tedious to list them all, 

2) it may not be easy to predict which will be important. Several automatic methods for 

generating the list of configurations have been devised. Notable among these is the fully 

optimized reaction space MCSCF (FORS-MCSCF) method due to Ruedenberg and co­

workers2. 

The FORS-MCSCF (alternatively called complete active space SCF, or CASSCF ') 

method aims to capture the flexibility of Full-CI without its expense by restricting the so-

called active orbitals, those that generate the configurations, to just those involved in the 

chemical process of interest. With a suitable choice of active orbitals and electrons, 

collectively referred to as the active space, it is possible to describe changes in chemical 

bonding smoothly through all molecular conformations. The chief advantage of FORS-

MCSCF is that it reduces the problem of choosing configurations to one of choosing an 

active space. However, once the active space is defined, the problem of finding a suitable set 

of starting orbitals still remains. Moreover, like Full-CI, the expense of FORS-MCSCF 

grows factorially with the size of the active space. 

Though the FORS-MCSCF wave function can provide qualitatively correct descriptions 

of electronic structure, it is less suited to accounting for the instantaneous effects of electron 

correlation that bring about a quantitative improvement in the wave function and its 

properties. Such effects may be described by excitations outside the active space and are 

sometimes referred to as dynamic or external correlation. 

1) Choice of Active Space. In general, the active space must be tailored to each specific 

problem. A consideration of such chemically intuitive matters as valence electrons, 

bonding orbitals, lone pairs, and so on, is only one part of active space selection. The 

biggest problem usually comes from the practical matter of generating starting 

orbitals from a preliminary calculation, often Hartree-Fock, and then choosing from 

these, the orbitals which encompass the relevant chemistry. Constructing the active 

space is usually cited as the reason MCSCF is not more popular. In response to this, 

new approaches to generating active orbitals are being developed which are intuitive 

and based on the orbitals of the separated atoms4. 
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2) Factorial Problem. The computational cost of the FORS-MCSCF problem grows 

factorially with the active space, presenting a significant bottleneck to accessing 

larger problems. However, recent progress in theory and algorithm development may 

offer solutions. One solution is to exploit the explosive growth in parallel 

supercomputing, particularly if the data storage demands can be distributed5 6. Much 

larger Full-CI problems become feasible if the aggregate memory of many thousands 

of processors can be harnessed7. 

On the other hand, rather than attempt the full problem, one may consider 

breaking it down into several smaller ones that are more manageable. This forms the 

basis of the occupationally restricted multiple active space (ORMAS) method. 

ORMAS allows more than one active space to be defined, such that the active 

subspaces interact via a restricted set of excitations between them8. 

3) Dynamic correlation. Finally, two general approaches to incorporating dynamic 

correlation involve applying second order perturbation theory, or truncated CI 

expansions, to the already multi-reference FORS-MCSCF wave function. Multi-

reference perturbation theory (MRPT) is neither variational nor size consistent, but it 

is computationally efficient and has been shown to give good results while requiring 

resources that are comparable to that of the FORS-SCF itself. Multi-reference singles 

and doubles CI (MR(SD)CI)9, on the other hand, is variational, but not size 

consistent, as is the case with any truncated CI. MRCI yields very accurate results, 

but at considerably greater computational expense than MRPT. Thus, MRPT has 

proved to be a popular method for determining barrier heights and relative energies. 

Multi-reference Perturbation Theory. MRPT is not uniquely defined, and several 'flavors' 

have emerged. The most well known are CASPT210, MROPT", MRMP2'2, and 

MCQDPT213. It is notable that while energies produced by the various methods differ, 

relative energies arc very close. We concern ourselves with MCQDPT2. MCQDPT is a 

multi-state theory, equivalent to MRMP2 when applied to a single state. It is used both as 

a single- and multi-state theory in this thesis. When applied to multiple states it belongs 

to the so-called 'perturb-then-diagonalize' class of methods (in contrast to other methods 

described as 'diagonalize-then-perturb'), that is, perturbation theory is first applied to an 
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'effective' Hamilton!an. A subsequent diagonalization of the effective Hamiltonian has 

the additional advantage of guaranteeing that unwanted interactions between states of the 

same symmetry, such as 'avoided crossings', are avoided. 

Given the success of MRPT methods, it would seem worthwhile to assess whether 

their lack of size extensivity and size consistency has any affect on the results. 

Surprisingly, beyond the liberal use of the phrase 'almost size consistent'14, the literature 

is largely silent on this topic. Thus, we are motivated toward a systematic study of 

exactly how significantly MRMP deviates from size consistency. Our results are striking 

(see Chapter 4). 

OM/MM 

i. SIMOMM 

The calculations on the reaction of acetylene on the Si(100)-(2xl) surface were 

performed using the surface integrated molecular orbital/molecular mechanics 

(SIMOMM) method. SIMOMM is an extension of the integrated molecular orbital 

molecular mechanics (IMOMM)11 method. The SIMOMM method removes all user 

imposed constraints on bond lengths and angles present in the IMOMM method. This 

degree of flexibility is critical to studying the silicon surface. 

SIMOMM was developed with an important principle in mind: while edge effects, 

or the errors introduced by removing the steric constraints of a bulk solid, are 

important to avoid, chemical reactions are local. Because of this locality, a 'bulk' 

region not far from the reaction may be approximated very cheaply with insignificant 

loss of accuracy. 

SIMOMM is implemented in the quantum chemistry package GAMESS^14 

(General Atomic and Molecular Electronic Structure System). The user defines an ab 

initio region where the 'chemistry' is occurring. The ab initio wave function 

describes the bond breaking or forming region, and is surrounded by a molecular 

mechanics region that accounts for bulk behavior. The geometries of both regions are 

fully optimized, by computing the gradients of each region in the traditional way, and 

then summing and minimizing the forces. 
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ii. Effective Fragment Potential (EFP) 

The EFP method17 is a discrete solvent/liquid model that was originally developed 

and implemented as a potential for water in order to study aqueous solvation. The 

success of this implementation prompted the development of a generalized version 

enabling a potential for any molecule, from a single ab initio calculation or a small 

number of calculations for very large molecules, to be generated. 

Although it is a classical potential, the EFP method has its roots in quantum 

mechanics. The original method, EFP1, contains terms that represent Coulomb, 

polarization, and exchange repulsion+charge transfer, as well as higher order effects. 

The Coulomb and polarization terms can be generated from a single ab initio 

calculation, and thus any parameters in these terms can be stored and used as needed 

or generated on the fly. The exchange repulsion + charge transfer and higher order 

terms (remainder term) are obtained by fitting to the potential generated from a 

number of calculations on the water dimer. All of these effects are added as one-

electron terms to the ab initio Hamiltonian. There are currently two additional 

implementations of the EFP1 method, one based on density functional theory (DFT)18 

and a second based on second order Moeller-Plesset Perturbation theory (MP2)19. 

These methods both include dynamic correlation effects and are therefore more 

accurate, though they still require fitting of the remainder term. 

The work in this thesis concerns the extension of the EFP method to replace a 

fitted repulsion term with an approximate analytical term, thereby avoiding the 

inconvenience of a fitting procedure. In the original EFP1 method, the fitted term was 

considered a 'remainder', since it incorporated all effects not accounted for in the 

Coulomb and polarizability terms (and the dispersion term in the MP2-EFP 

implementation). Thus, more than one term is needed to include all of the remaining 

effects, of which exchange repulsion is the dominant contribution, followed by charge 

transfer. This thesis describes the coding and testing of the approximate exchange 

repulsion interaction term between the EFP and ab initio regions. 
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CHAPTER 2: STRUCTURE AND ENERGETICS OF THE SILICON CARBIDE 

CLUSTERS SIC3 AND SI2C2 

A paper published in the Journal of Chemical Physics 

Reprinted with permission. Journal of Chemical Physics 2001, 115, 1795. 

Copyright 2001 American Institute of Physics 

Jamie M. Rintelman and Mark S. Gordon 

Abstract 

A comprehensive ab initio study of the four atom silicon carbide clusters SiC3 and 

Si2C2 using multiconfigurational self-consistent field wave functions is presented. In contrast 

to previous studies the global minimum isomer for SiC3 is predicted to be a C„v linear triplet 

with a terminal silicon atom. For Si2C2 the global minimum is a rhombic structure, in 

accordance with previous studies, while the linear triplet Si-C-C-Si is just 1.0 kcal mol1 

higher in energy. 

I. Introduction 

Understanding the reactivity of silicon carbide under extreme environments is of 

current interest. In order to understand the properties of such a material it is useful to study 

smaller clusters of the bulk material. Information on the nature of bonding and electronic 

structure can be gained when studying these smaller units at a level of theory that would not 

be possible for the bulk material. Such calculations then provide a baseline for future 

calculations on larger species. This is the focus of the present study. 

The work presented in this paper has been additionally stimulated by recent 

experiments performed by the Lineberger group, who are studying silicon carbide clusters of 

three to ten atoms. Because the recent experiments by Lineberger, Davico and Schwartz1 find 

primarily carbon-dominated species, SiC3 and Si2C2 are considered here. In order to compare 
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fully with the results of the photodetachment experiments it will ultimately be necessary to 

look at both the neutral and anion species. This paper presents results for the neutral species. 

There have been a number of previous studies of SiC3 and Si2C2, all of which used 

single reference wave functions. Albers, Grev and Schaefer studied SiC3 using configuration 

interaction with single and double excitations (CISD) at Hartree Fock geometries 2. They 

found the lowest energy isomer to be a singlet rhombic C2v structure with the silicon 

terminated linear 32 structure 4.1 kcalmol1 higher and a second rhombic C2v structure 4.3 

kcal mol1 higher than the global minimum (Fig. 1). In 1997, Gomei et. al. conducted a study 

of SiCn clusters \ They also found a C2v rhombic structure to be the SiC3 global minimum at 

the CCSD(T)/aug-cc-pVDZ//MP2/6-31G(d) level of theory with the 32 silicon terminated 

linear isomer 6.9 kcal mol1 higher. Hunsiker and Jones examined mixed silicon carbide 

clusters using density functional theory (DFT) and found the SiC3 global minimum again to 

be the singlet rhombic structure, with the linear triplet and second rhombic structure just 0.2 

and 1.8 kcal mol™1 higher, respectively4. 

Trucks and Bartlett performed SDTQ-MBPT|4| calculations on Si2C2 \ and later 

Fitzgerald and Bartlett performed MBPT(4) calculations 6. Both studies found the D2h 

rhombic structure to be the global minimum with a silicon terminated linear 32u isomer ~12 

kcal mol1 higher (12.3 and 11.9 kcal mol1 respectively). The second study, however, also 

located a distorted trapezoid 4.0 kcal mol1 above the global minimum. Lamertsma et al's 

MP2 study of Si2C2 located the same rhombic ground state with the distorted trapezoid 10.1 

kcal mol 'and the 32u structure 15.5 kcal mol1 higher than the global minimum 1. Hunsiker 

and Jones' DFT study found the same ordering although the three isomers were found to be 

closer in energy 4. The Hunsiker and Jones results indicate that the distorted trapezoid and 

3Z„ isomers are just 4.2 kcal mol1 and 8.3 kcal-mol1 above the global minimum, 

respectively. Presilla-Mârquez et al optimized the rhombic global minimum structure with 

CCSD(T) and found its energy to be 6.5 kcal mol1 lower than the distorted trapezoid and 7.7 

kcal mol1 lower than the linear triplet, with single points for the latter two structures 

calculated using CCSD(T) at the MBPT(2) optimized structures 8. 

Because all of the previous calculations were performed with single reference wave 

functions, some potentially low-lying states were not studied. In this paper we present the 



www.manaraa.com

10 

results of a comprehensive ab initio study of the SiC3 and Si2C2 systems utilizing a 

multiconfxgurational self consistent field (MCSCF) wave function. Energies, equilibrium 

geometries, and vibrational frequencies are presented for each isomer. We also evaluate the 

need for the application of a multireference wave function in this investigation. 

II. Computational Details 

(a) Basis Set. In this investigation the 6-31 G(d) basis set9 was used for all geometry 

optimizations. Future calculations on anion structures are planned. Therefore, in the interest 

of using a consistent basis set throughout, the aug-cc-pVDZ basis 1012 was chosen. This basis 

set includes necessary diffuse functions, yet remains tractable enough to apply to these 

systems. This basis set was used in calculating single point energies subsequent to geometry 

optimization. 

(b) Wave functions. A fully optimized reaction space (FORS)-MCSCF wavefunction 13 

15 (also referred to as CASSCF 16) was used as the reference function for all calculations in 

this study. An active space of 12 electrons in 10 orbitals was used for geometry optimization 

of nonlinear structures and a 12 electrons in 11 orbitals active space was used for geometry 

optimization of all linear structures. This difference in active space is necessary in order to 

include all eight n orbitals formed by all combinations of valence px and py orbitals on silicon 

and carbon. As will be discussed later, the calculation and inspection of natural orbital 

occupation numbers (NOONs) for each isomer confirms this choice. For single point 

energies the larger (12,11) active space was used for all species. 

In the case of the linear species studied here, it is impossible to represent the correct 

singlet wave function without including at least two determinants. Because the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are 

degenerate JC MOS, the correct wave function must include partial and equal occupation of 

each of these orbitals. This is true of both the '2g
+ and LAg states of Si2C2 and the '2+ and 'A 

states of SiC3. Due to these group theoretical considerations, it is necessary to use a multi-

determinant description in order to construct a qualitatively correct wavefunction for the 

linear singlet species. It is straightforward to determine that this is an even-odd phenomenon, 
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that is, at least two configurations will be necessary to construct a wavefunction for the 

singlet species of any linear silicon carbide cluster constructed from an even number of 

atoms. Likewise a similar approach is required when describing a linear triplet silicon 

carbide cluster containing an odd number of atoms. One can determine this by considering 

the bonding using a minimal basis model. In the case of four atom clusters there are 16 

valence electrons, 10 of which reside in either o or lone pair orbitals. The remaining six 

electrons must reside in JC orbitals. Since each jt orbital is one of a degenerate pair of 

orbitals, the first four JC electrons go in the two fully bonding (no nodes) n orbitals. The next 

two must go into a degenerate pair of orbitals, so that to construct a correct singlet wave 

function one must include a combination of ( n2
xi + Ti 'yz ) and ( ri'X7 + K]7 ). Of course, this applies 

only to fully unsaturated species. 

Generally, for a given spin and symmetry, only the lowest electronic state is considered 

for each isomer. 

(c) Methods. Starting with preliminary Hartree Fock structures, geometry optimizations 

were performed using a 12 electrons in 10 orbitals (11 orbitals for linear structures) FORS -

MCSCF wavefunction with the 6-31 G(d) basis set9. Unless otherwise stated any discussion 

of optimized structures or nature of stationary points implies this level of theory. Some 

structures with very high energies (e.g., structures 2a, 6a, 2b in Figures 1 and 2) were 

optimized with only a six electrons in six orbitals active space. Stationary points were 

characterized by the calculation and diagonalization of the energy second derivative matrix 

(hessian). No negative eigenvalues indicates a minimum on the potential energy surface, one 

negative eigenvalue indicates a transition state, and more than one negative root indicates a 

higher order saddle point of little chemical interest. 

External correlation effects (sometimes referred to as dynamic correlation effects) were 

included by carrying out second order multiconfigurational quasi degenerate perturbation 

theory (MCQDPT) 17 calculations at the MCSCF (12,10 or 12,11) optimized geometries. For 

these single point calculations the aug-cc-pVDZ basis set was used10"12. 

All calculations were done using the electronic structure code GAMESS IK'y. 
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III. Results and Discussion 

For both the SiC3 and the Si2C2 system all structures considered chemically reasonable and 

interesting were investigated and optimized. Each isomer was then characterized as a 

minimum, transition state, or higher order stationary point. Results are presented first for 

SiC3 followed by results for Si2C2. Each isomer is given an alphanumeric label. The number 

refers to the geometric structure; an 'a' or 'b' designates SiC3 or Si2C2, respectively; and's' 

and't' refer to singlet and triplet spin states, respectively. 

SiC3. Six basic structures were optimized and identified as stationary points on the SiC3 

potential energy surface (PES). Geometries are shown in Figure 1. Vibrational frequencies 

can be found in Table 1. All energies, summarized in Table 2, are given in relation to lta, 

the SiC3 global minimum, unless otherwise stated. 

Linear. There are two possible linear (C„v) SiC3 isomers, for which 'Z\ 'A, and '£ states 

can be calculated. These linear isomers differ in the location of the Si, either terminal (la) 

or internal (2a). Since un saturation at C is preferred, and silylenes are more stable than 

carbenes, la is likely to be lower in energy than 2a. 

2a. The FORS(12,l l)/6-3lG(d) energy of the 32 state of isomer 2a is very high (86 

kcal mol ') at the FORS(6,6) geometry [FORS(12,ll)/6-31G(d)//FORS(6,6)/6-31G(d)|. The 

energies of the '2+and 'A states are 101 kcalmol1 and 104 kcal mol1, respectively, at the 

triplet geometry using the same level of theory described above. Because of the high 

energies of these species, they are not discussed further. 

la. More important than isomer 2a, from an energetic point of view, is the silicon 

terminated linear isomer la. The 32~ state, lta, is a minimum on the FORS(12,l l)/6-31G(d) 

potential energy surface. In fact, it is the global minimum among all SiC, isomers at the 

MCQDPT(12,ll)/aug-cc-pVDZ// MCSCF(12,11)/6-31 G(d) level of theory. Examination of 

natural orbitals and bond lengths indicates a strong double bond between each pair of 

carbons. The internal C-C bond (1.29Â) is slightly shorter than the terminal C-C bond (1.31 

Â)2<). Likewise, the C-Si bond length of 1.74 Â is comparable to the double bond length of 

1.69Â in silene 21. 

In the 32 state the unpaired electrons are in degenerate Jt orbitals. These orbitals 

have a node between the two central carbons, and bonding interaction between the terminal 
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carbon and its nearest neighbor carbon and between the terminal silicon and its nearest 

neighbor carbon. 

Examination of NOONs reveals considerable electron density outside those orbitals 

which would be occupied in the Hartree-Fock reference (for the sake of brevity, in 

subsequent discussions we will refer to this as "outside the HF reference"). The first two 

such orbitals are degenerate jt orbitals with two nodes and bonding interactions between the 

two middle carbons. The corresponding NOONs are both 0.097. It is likely that this makes a 

contribution to the strength of this central C-C bond. The remaining two active orbitals are a 

degenerate pair of completely antibonding Jt orbitals. The corresponding NOONs are both 

0.044. Thus the total deviation from the RHF reference is 0.282 electrons. 

Hund's rule predicts the triplet to be lower in energy than the singlet, and our results 

are consistent with that prediction. However, since singlet configurations, '2+ and 'A, have 

energies within 11 kcal-mol' of the triplet state, it is important to consider these two singlet 

states. In the 32 state, the two unpaired electrons are in degenerate jt orbitals, jtx and jty. To 

generate a singlet spin state the electrons must be paired, and will occupy a degenerate pair 

of jt orbitals. Therefore, one must use a minimum of two determinants to correctly describe 

the qualitative nature of the singlet states. Conceptually, the '2+ state can be characterized 

by the orbital occupation (jtx° Jty
2 + jt,2 Jiy°), the two dominant determinants. The 'A state 

consists of two degenerate states (jtx° jty
2 - jtx

2 jry°) and jtx' Jiy' such that in the latter the 

electrons are singlet coupled. The 'Z+ and *A energies are 9.3 kcal mol1 and 10.6 kcal mol 

', respectively, above the 3£ global minimum at the MCQDPTZ aug-cc pVDZ/ZCASSCF / 6-

3lG(d) level. All subsequent SiC3 energies are likewise given in reference to the above-

mentioned global minimum (lta 3E )• The geometries of the linear singlets differ only 

slightly from the geometry of the triplet. 

Four membered ring. Isomers 3a and 4a (Fig. 1) have very similar four membered ring 

structures. Conceptually, they can be interconverted simply by lengthening the transannular 

C-C bond while simultaneously shortening the transannular carbon-silicon bond. The bond 

stretch isomerism of these two species has been examined in depth in a previous study 22. 
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3a. Both singlet and triplet states were examined for isomer 3a. The 'A, structure is 

lower in energy than the 3B2 structure by 21.9 kcalmol1. The transannular C-C bond is 

slightly shorter in the 'A, structure (1.46Â) than in the 3B2 structure (1.53Â). The two 

equivalent C-C bonds are slightly longer in the singlet (1.42Â) than in the triplet (1.35Â), 

while the two equivalent C-Si bonds are shorter in the singlet (1.82Â) than in the triplet 

(1.95Â). Relative energies (Table 2) for 3sa and 3ta are 4.4 kcal mol1 and 26.2 kcal-mol1 

above the global minimum, respectively. 

4a. Structure 4a is related to 3a by a lengthening of the C-C bond, and a 

corresponding shortening of the Si-C transannular bond. In 4ta the singly occupied orbitals 

are b[ and a2 giving a 3B2 state. 

It has been proposed 2 that 4a can be viewed as a silicon atom complexed to a linear C3 

unit. While the C-C C bond angles of 154.9° and 138.1° for 4sa and 4ta, respectively, may 

suggest this, examination of natural orbitals, and the corresponding density matrix over 

active MCSCF orbitals gives no indication of this type of bonding situation. For both the 'A, 

and 3B2 states silicon participates in G bonding with each of the three carbons, with the 

majority of the remaining electron density around silicon located in a lone pair orbital. There 

is a bonding it orbital on the C3 unit that has no bonding overlap with the JZ orbital or the <7 

lone pair orbital on silicon. 

The C-C bonds are intermediate between single and double bonds in both 4sa and 

4ta. The transannular C-Si bond length in 4sa indicates single bonding, while peripheral C-

Si bond lengths indicate weak single bonding 23. In 4ta, however, the three C-Si bonds are 

almost equivalent, with the transannular bond only .02 Â longer than the peripheral C-Si 

bonds. The MCSCF bond order analysis24 25 is consistent with this picture. The three C-Si 

bond orders are virtually identical for 4ta (0.691, 0.691, and 0.684), while in 4sa the 

transannular Si-C bond is a bit stronger than the peripheral Si-C bonds (0.736, 0.595, and 

0.595). 

4sa and 4ta are very close in energy, 7.8 and 5.9 kcal-mol1 above the global 

minimum, respectively. 
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Three membered ring structures. Two C2v structures containing one three membered 

ring were examined. Isomer 5a (Fig. 1) consists of a ring of three carbons with a silicon 

bonded to one of the vertices. Isomer 6a has a ring containing two carbons and one silicon 

with an exocyclic carbon bonded to the silicon. 

5a and 6a. Both the 'A, and 3A2 states of isomer 6a are very high in energy ('A, 

103.4 kcal, 3A2 82.1 kcal) at the MCQDPT(12,10)/6-31G(d) level. Thus, this isomer was not 

examined extensively for quantitative information on energetics. Clearly it is not relevant in 

a search for the most stable isomers, those isomers most likely to be observed 

experimentally; however, when seeking to understand the characteristics of the most stable 

clusters, it is helpful to contrast these with the properties of the least stable structures. Note 

that isomer 5a maximizes C-C bonding while minimizing Si-C bonding. Isomer 6a 

represents the three-membered ring structure with the maximum possible number of Si-C 

bonds and the minimum possible number of C-C bonds (one). Since silicon avoids multiple 

bonding, it is not surprising that the JT bond in 6a is located almost completely between the 

two equivalent carbons of the ring, whereas in isomer 5a, the analogous JT bond is much more 

delocalized throughout the ring. In 5a the 'A, energy is 25.2 kcal-mol', while that of the 

triplet is 30.8 kcal-mol1. 

SiC3 Relative Energies. The lowest energy isomer is predicted to be the 32 state of the 

linear molecule with a terminal silicon atom (Si-C-C-C). The *2+ and 'A states are both 

within 11 kcal mol1 of the global minimum, 9.3 and 10.6 kcal mol1 respectively. The linear 

isomer with an internal silicon atom is found to be much higher in energy. The second 

lowest energy structure, rhombic 3sa, with a silicon at the vertex of the long axis, is 4.4 

kcal mol1 above the global minimum. The previous CISD study by Alberts, Grev, and 

Schaefer2 predicts the reverse order of the two lowest isomers. This may be due to the 

multi-configurational nature of these clusters, since these earlier calculations were done using 

single reference wave functions. The occupation numbers in the virtual orbitals for 3sa are 

all greater than 0.05, with the largest being 0.076. Those for lta are (2x) 0.097 and (2x) 

0.044. The singlet and triplet states of isomer 4a, 4sa and 4ta, are also quite low in energy 

at 7.8 and 5.9 kcal-mol1, respectively (see Table 2). 
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Somewhat intermediate in energy, at 25.2 and 30.8 kcal-mol1 are 5sa and 5ta. In the 

context of trends observed in this system this is most likely due to ring strain and Si-C 

multiple bonding. 

High energy structures include singlet and triplet 6a and 2a, all at least 80 kcal-mol1 

above the global minimum. Isomer 6a has the maximum number of Si-C bonds, with very 

little C-C bonding, and an exocyclic carbene. Isomer 2a forces silicon to participate in JT 

bonding, and also has an additional C-Si bond instead of a C-C bond, and a terminal carbene 

carbon. 

Si2C2. Ten basic structures were optimized and identified as stationary points on the 

Si2C2 PES. Singlet and lowest energy triplet configurations were examined for all isomers 

when possible. Geometries are shown in Figure 2. Vibrational frequencies are presented in 

Table 3. 

Dœh structures. Two (linear) Dmh isomers of Si2C2 have been considered. Isomer lb 

has two terminal silicon atoms, while in isomer 2b the carbon atoms are terminal. Both 

isomers have 32g, 'Zg\ and 'A states to be considered. 

lb. The 32g™ configuration of isomer lb, ltb, has an energy of 1.0 kcal-mol1 

relative to the rhombic global minimum. Before the addition of dynamic correlation via 

MCQDPT2, the 32g state is lowest in energy; however, as is frequently the case, the 

addition of external correlation preferentially stabilizes the singlet with respect to the triplet. 

A C-C bond length of 1.28 Â in ltb indicates that there is a double bond interaction 

between these two atoms 20. The silicon-carbon bond length of 1.77Â also indicates a double 

bond 21. The Mayer bond order analysis is consistent with this picture 19242\ 

The '2g+ and 'A states of lb, lsb-£ and lsb-A, are just 8.9 and 5.8 kcal-mol 'above the 

global minimum, respectively. Since Si2C2 and SiC3 are isovalent, the electron occupations 

for linear singlet species are quite similar. The 'A state can be described schematically as 

having (JCX° JTY
2 - JTX

2 JIY°) and JTX' JTY" occupation in the HOMO and LUMO n orbitals, while 

lsb-D can be described by (JTX° JTY
2 + JIX

2 jry°). 

Bond lengths in lsb-£ and lsb-A are quite similar to those in ltb; the C-C bonds are 

the same length, 1.27 Â, while the C-Si bonds are slightly longer in the 'E* and 'A states 

(Fig. 2). Thus, bonds again appear to be double bonds. 
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2b. The calculated states of isomer 2b are all significantly higher in energy (~ 200 

kcal mol ') than isomer lb. Thus, these states were not studied extensively. It is worthwhile 

to briefly consider the qualitative differences between lb and 2b. Especially significant is 

the observation that in 2b the silicons are forced to multiple bond with each other. This is 

highly unfavorable; the C-C multiple bonds in lb are preferred. 

D2h structures. The two D2h structures considered in this investigation each consist 

of four membered rings of alternating silicons and carbons (Fig. 2). Isomer 5b has a 

transannular C-C bond, and a long Si-Si distance. In isomer 7b, the Si-Si bond is short, 

while the C-C bond distance is much longer than that of 5b. 

5b. The 'Ag state of rhombic structure 5b is a minimum on the PES. 

The C-C bond in 'Ag (5sb) is intermediate between typical single and double bond 

lengths at 1.48Â. In agreement with this, the Mayer bond order analysis indicates a C-C 

bond order of 1.45. The HOMO is a a bonding orbital, between the two carbons, with 

additional electron density extending outside the ring from the two carbons. The HOMO-1 is 

a JT bonding orbital with Mulliken populations indicating that approximately 80% of the 

electron density is located on the carbons. Additionally, there is a low lying o orbital that is 

bonding throughout the molecule. These are the only orbitals contributing to C-C bonding in 

this molecule. Si-C bond distances are 1.82 Â, with bond orders of 1.061. The Si-Si distance 

is 3.33Â. Examination of NOONs shows 0.19 electrons outside the RHF reference for 5b 

'A,. 

The lowest triplet state of isomer 5b, 3Blg, is 43.0 kcal mol ' above the 'A, state, the 

Si2C2 global minimum. 3Blg is also a minimum on the FORS(12,10)/6-31G(d) PES. The C-C 

bond distance is slightly shorter than that of the singlet, 1.44Â ('A, = 1.48Â), while the Si-C 

bond distance is slightly longer at 1.86Â compared to 1.82Â in 'A;. 

7b. Relative to 5b the second D2h isomer, 7b, has a longer C-C distance and a shorter 

Si-Si distance. Both the 'Ag and the lowest triplet, 3AU, are rather high in energy; 76.8 and 

47.3 kcal mol™1 higher than the global minimum, respectively (Table 4). 

The 7b 'Ag state (7sb) is a minimum on the PES. It is interesting to compare the 7b 

'Ag JT bonding MO with the analogous 5b 'Ag JT MO. In 5b 'Ag this orbital is located 
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primarily between the two carbons; in 7b 'Ag, the electron density is almost equally 

distributed among all atoms. 

Now consider the 3AU state of isomer 7b, 7tb. Not only is 7tb much lower in energy 

than 7sb, there is also a significant change in geometry. The Si-Si bond distance is more 

than 0.5 Â longer in 7tb than 7sb ('Ag 2.304,3B,„ 2.835Â) while the C-C distance is more 

than 0.5 Â shorter in the triplet than the singlet ('Ag 2.967,3Blg 2.329Â). Examination of 

molecular orbitals shows G bonding between the carbons of 7tb, whereas there is virtually no 

C-C o bonding in 7sb. 

The 3Blg state is a transition state on the PES. When this structure is distorted along 

the imaginary normal mode, subsequent optimization leads to the 3A2 state of C2v symmetry 

(lOtb). 

C2v structures. Four C2v structures have been studied (Fig. 2). Two of these (3b, 4b) 

consist of three-membered rings with an exocyclic carbon or silicon. The third C2v structure 

(10b) is a butterfly shaped four membered ring generated from 7b 3Blg by following the 

normal mode with the imaginary frequency, as discussed above. The fourth (8b) is a 

trapezoidal planar structure. 

3b. The lowest energy C2v structure is isomer 3b. The 'A, state is slightly lower in 

energy than the 3B2 state, by 1.8 kcal mol1 (Table 4). In both 3sb and 3tb Si-Si and Si-C 

bond lengths are very close to typical single bond lengths 21. The Mayer bond order analysis 

indicates that the Si-Si bond orders for the singlet and triplet are 1.145 and 1.269, while the 

Si-C bond orders are 0.815 and 0.803, respectively. For both states there is very strong 

bonding between the carbons. C-C bond lengths of 1.29 Â for the 'A; structure and 1.30 Â 

for the 3B2 structure indicate strong double bonding. Examination of natural orbitals is 

consistent with this: There are two jt bonding orbitals between the carbons, one of them 

perpendicular to the plane of the molecule and the other in the plane of the molecule. The 

NOONs in the singlet are 1.940 and 1.914; in the triplet they are 1.938 and 1.925, 

respectively. The jt bond perpendicular to the plane is very localized between the two 

carbons such that it is analogous to the bonding observed in the linear species where there are 

two degenerate jt bonds. Of course, in this case the two orbitals are not degenerate. The 

singlet and the triplet are 26.4 and 28.2 kcal mol1 above the global minimum. 
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4b. Isomer 4b consists of a three-membered ring with an exocyclic silicon bonded to 

the silicon vertex. There is very little difference between the 'A, structure, 4sb, and that of 

3A2, 4tb. The largest difference in bond lengths is 0.06 Â; bond angles are the same to within 

1°. The bonding is quite similar. The bond lengths indicate strong double bonding between 

the carbons, Si-C bonding slightly stronger than single, and a Si-Si bond intermediate 

between single and double bonding. 

The lowest energy state for this isomer is 3A2, in which the two unpaired electrons reside 

in the b, Si-Si Jt bonding orbital and a b2 n orbital that is primarily localized on the exocyclic 

silicon. Strictly speaking, this b2 orbital is anti-bonding between the cyclic silicon and the 

two carbons; however, there is so little electron density on the carbons that there is little anti-

bonding character. 4tb and 4sb are 44.8 and 70.2 kcal mol1 above the global minimum, 

respectively. 

10b. The butterfly C2v isomer, lOtb, is closely related to its D2h precursor 7tb. In 

lOtb the molecular plane of 7tb is broken. 7sb is not a low energy species, with a relative 

energy more than 80 kcal mol1 higher than the global minimum. 

Although the transannular C-C distance is 2.35Â, natural orbitals indicate that the 

carbons participate in both o bonding and banana shaped, JT like bonding, both with diradical 

character on the carbons. Lone pairs are located on the silicons. 

Attempts to isolate the singlet with this geometry (lOsb) were not successful. 

Optimizations starting from the triplet geometry in attempt to find an isomer lOsb all lead 

back to the global minimum structure 5sb. 

8b. Isomers 8sb and 8tb are trapezoidal structures. Although the singlet and triplet 

are only 33.5 and 25.5 kcal-mol1 above the global minimum, both structures have two 

imaginary frequencies. For isomer 8sb, the modes corresponding to the two imaginary 

frequencies lead to isomers 6sb and 9sb. For isomer 8tb, the two imaginary frequencies 

connect this structure to isomers 6tb and 9tb. Both 9sb and 9tb are C2 transition states on 

the PES. 
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Isomer 9sb (23.0 kcal mol"1 above the global minimum) has one imaginary frequency 

at 271i cm"1. Distortion along this normal mode followed by optimization of the geometry 

leads to isomer 6sb. 

For 9tb, distortion along the mode with imaginary frequency 142i cm1, followed by 

geometry optimization produces isomer 6tb. 9tb is 21.6 kcal-mol1 higher than the global 

minimum 5sb. 

Cs structures. 6b. Isomer 6b is a distorted trapezoidal structure with Cs symmetry. 

Both the singlet and the triplet are minima on the MCSCF/6-31 G(d) potential energy surface. 

6sb is 4.2 kcal-mol1 higher than the global minimum. The Si-Si bond distance is 

2.455Â compared with 2.342Â in disilane 2h, indicating a weak bond. On the other hand, 

qualitative examination of natural orbitals reveals five orbitals with some amount of bonding 

interaction between the two silicons, and one with anti-bonding character. MCSCF bond 

order analysis indicates a Si-Si bond order of 0.819, and Edmiston-Ruedenberg energy 

localized orbitals 27 indicate weak Si-Si interaction. The 4c-2e- JT bond is mostly localized on 

the two carbon atoms, with Mulliken populations of 1.083 on the central carbon and 0.520 on 

the other carbon atom. The populations on the silicons are 0.226 and 0.113. Between each 

carbon atom and silicon-1 there is nearly a single bond; the third C-Si bond is much stronger, 

with a bond order of 1.406. The C-C MCSCF bond order is 1.547. 

6tb is higher in energy than 6sb, 15.0 kcal-mol1 above the global minimum. The Si-

Si distance is 2.62Â in 6tb compared to 2.46 Â in 6sb. The transannular C-Si bond is 

slightly longer in 6tb than that in 6sb, while the peripheral carbon distance to the same 

silicon is shorter by 0.06 Â. The Si-Si bond length here is much shorter than the 2.971 Â 

obtained in a previous study that employed UHF with the 6-31G* basis set7. 

Si2C2 relative energies. The lowest energy isomer is predicted to be 5sb, just 1.0 

kcal-mol1 lower than the 32g" state of lb, ltb. Although the relative ordering of these two 

isomers is in agreement with most previous studies5 7, we find them to be much closer in 

energy than the 11.9 kcal-mol1 found by Fitzgerald and Bartlett (MP4/DZP) or the 15.5 

kcal-mol1 found by Lammertsma and Gtiner (MP2/6-31G(d)). As with SiC, the linear 

singlets are also quite low in energy. The 12g
+ state has a relative energy of 8.9 kcal-mol ', 

while the 'Ag state has an energy of only 5.8 kcal-mol"1 at the 12g
+ geometry. Also very low 
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in energy is the distorted trapezoid structure 6b; the singlet is only 4.2 kcal-mol ' and the 

triplet is 15.0 kcal-mol ' above the global minimum. 

A number of structures have somewhat higher energy, -20 - 30 kcal mol '. These have 

some C-C bonding, but suffer either from some degree of ring strain associated with the 

incorporation of a three-membered ring, or from some C-Si bonding at the expense of C-C 

bonding. Very high energy isomers ( > 40 kcal-mol1) allow very little C-C bonding, 7b, or 

suffer from a great deal of ring strain, as in 4b where Si-C-C bond angles are 69° and the C-

Si-C bond angle is 41°. 

IV. Wave functions. 

Now consider the importance of using MCSCF wave functions for these compounds. 

The unsaturated nature of these molecules, combined with the presence of a large number of 

negative virtual orbital energies at the Flartree Fock level suggests the need for a multi-

reference wave function. 

Since our primary interest is in predicting the lowest energy structures, and 

characterizing these and other structures which might be observed experimentally, we will 

focus on those isomers whose energy is < 10 kcal-mol1 above the global minimum. Within 

these isomers we will focus on those orbitals which would be unoccupied by a single 

reference wave function. We will refer to these orbitals as "unoccupied" orbitals, although 

clearly they are not completely unoccupied in an MCSCF wave function. These low energy 

isomers all have at least one "unoccupied" natural orbital occupation number (U-NOON) 

greater than 0.07. lta has two U-NOONs of 0.097, with total electron density outside the 

Hartree-Fock configuration of 0.281 e . lsa-£ and lsa-A both have U-NOONs above 0.1 and 

total electron density in "unoccupied" orbitals of more than 0.3. It has been suggested 

previously 28 " that an occupation number for a virtual orbital of 0.1 or as low as 0.07 

indicates that a single determinant wavefunction is suspect. 

The situation is similar for Si2C2. The wavefunction of the rhombic structure 5sb is 

the most dominated by the Hartree-Fock configuration. Its largest U-NOON is 0.070, with 

0.189 e total electron density outside the RHF reference. The linear species more clearly 
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require a multiconf gurational representation, ltb has two U-NOONs of .117 and total 

electron density in "unoccupied" orbital s is 0.339. lsb-£ has two U-NOONs of 0.170 and 

total electron density in "unoccupied" orbital s of 0.463, nearly half an electron. 

These occupation numbers indicate that a multi-reference wave function is most 

appropriate. This may explain the difference between relative energies found in this study 

and those in previous studies. 

V. Conclusions 

A comprehensive study of singlet and triplet isomers of SiC3 and Si2C2 has been 

presented, including examination of structures, bonding, relative energies and vibrational 

modes. The SiC3 global minimum is predicted to be a silicon terminated 32" structure, lta, 

with a singlet rhombic structure, 3sa, 4.4 kcal-mol"1 higher. This is in contrast to previous 

predictions that the rhombic structure is the global minimum. The Si2C2 global minimum is 

predicted to be a singlet rhombic structure, 5sb, with a 3X~ silicon terminated linear isomer, 

ltb, 1.0 kcal-mol1 higher in energy. Although the rhombic structure has previously been 

predicted to be the global minimum, we find the 3£™ structure to be much lower in energy 

than had previously been expected. 

It has also been determined that the use of a multireference wavefunction is important 

for studying these systems. 

Acknowledgements. This work was supported by grants from the Air Force Office of 

Scientific Research. JR was supported in part by a grant from the Basic Energy Sciences 

Division of the Department of Energy, administered by the Ames Laboratory. The authors 

have benefited greatly from discussions with Professor Larry Burggraf, Professor Carl 

Lincberger, Dr. Gustavo Davico, and Dr. Rebecca Schwartz. Some of the calculations were 

performed on an IBM Power3 cluster, obtained in part from an IBM SUR grant and in part 

from a grant from the Department of Energy MIC S Division. 



www.manaraa.com

23 

References: 

1 C. Lincberger, G. Davico, and R. Schwartz (private communication). 

2 I. L. Alberts, R. S. Grev, and H. F. Schaefer III, journal of Chemical Physics 93, 

5046-5052(1990). 

3 M. Gomei, R. Kishi, A. Nakajima, S. Iwata, and K. Kaya, Journal of Chemical 

Physics 107, 10051-10060(1997). 

4 S. Hunsiker and R. O. Jones, Journal of Chemical Physics 105, 5048-5060 (1996). 

5 G. W. Trucks and R. J. Bartlett, journal of Molecular Structure (Theochem) 135, 

423-428(1986). 

6 G. B. Fitzgerald and R. J. Bartlett, International Journal of Quantum Chemistry 

XXXVIII, 121-128(1990). 

7 K. Lammertsma and O. F. Giiner, journal of the American Chemical Society 110, 

5239-5245 (1988). 

8 J. D. Presilla-Mârquez, S. C. Gay, C. M. L. Rittby, and W. R. M. Graham, Journal of 

102, 6354-6361 (1995). 

9 M. S. Gordon, Chemical Physics Letters 76, 163-168 (1980). 

10 T. H. Dunning Jr., Journal of Chemical Physics 90, 1007-1023 (1989). 

11 R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, Journal of Chemical Physics 96, 

6796-6806(1992). 

12 D. E. Woon and T. H. Dunning Jr., Journal of Chemical Physics 98, 1358 (1993). 

13 L. M. Cheung, K. R. Sunberg, and K. Ruedenberg, International Journal of Quantum 

CAe/MW/zy 5, 1103-1139 (1979). 

14 K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chemical Physics 

71,41-49(1982). 

11 K. R. Sundberg and K. Ruedenberg, in Quantum Science, edited by J. L. Calais, O. 

Goscinski, J. Linderberg, and Y. Ohm (Plenum, New York, 1976), pp. 505. 

16 B. O. Roos, P. Taylor, and P. E. Siegbahn, Chemical Physics 48, 157-173 (1980). 

17 H. Nakano, Journal of Chemical Physics 99, 7983-7992 (1993). 



www.manaraa.com

G. D. Fletcher, M. W. Schmidt, and M. S. Gordon, Advances in Chemical Physics 

110, 267-294 (1999). 

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, 

S. Koseki, N. Matsunage, K. A. Nguyen, S. Su, T. Windus, M. Dupuis, and J. A. 

Montgomery, Journal of Computational Chemistry 14, 1347-1363 (1993). 

CRC Handbook of Chemistry and Physics, Vol., edited by R. C. Weast, M. J. Astle, 

and W. H. Beyer (CRC Press, Boca Raton, FL, 1983). 

G. Raabe and J. Michl, Chemical Reviews 85, 419-509 (1985). 

P. V. Sudhakar and K. Lammertsma, journal of Physical Chemistry 96, 4830-4834 

(1992). 

L. Pierce and R. W. Kilb, Journal of Chemical Physics 27, 108-112 (1957). 

G. Chung, M. V. Pak, D. R. Reed, S. R. Kass, and M. S. Gordon, Journal of Physical 

Chemistry A 104, 11822-11828 (2000). 

I. Mayer, Chemical Physics Letters 97, 270-274 (1983). 

M. S. Gordon, T. Truong, and Bonderson, Journal of the American Chemical Society 

108, 1412-1427(1986). 

C. Edmiston and K. Ruedenberg, Reviews of Modern Physics 35, 457-465 (1963). 

J. M. Bofill and P. Pulay, Journal of Chemical Physics 90, 3637-3646 (1989). 

M. S. Gordon, M. W. Schmidt, G. M. Chaban, K. R. Glaesemann, W. J. Stevens, and 

C. Gonzalez, journal of Chemical Physics 110, 4199-4207 (1999). 

P. Pulay and T. P. Hamilton, Journal of Chemical Physics 88, 4926-4933 (1988). 

K. Wolinski and P. Pulay, Journal of Chemical Physics 90, 3647-3659 (1989). 



www.manaraa.com

Table 1. SiC3 vibrational frequencies 

vibration symmetry intensity 
debeye2amu'Â2 

frequency 

Isa-delta 

1,4 bend Tt 0.05 153 (2x) 

1,3 bend Tt 0.14 397 (2x) 

Si-C stretch o 0.31 612 

1,3 C-C stretch o 1.99 1350 

C-C stretch a 4.70 1982 

Isa-sigma 

1,4 bend Tt 0.04 150 (2x) 

1,3 bend 71 0.14 382(2x) 

Si-C stretch a 0.45 613 

1,3 C-C stretch a 2.45 1342 

C-C stretch a 4.19 1959 

lta 

1,4 bend jt 0.08 160 (2x) 

1,3 bend JT 0.15 410 (2x) 

Si-C stretch a 0.10 619 

1,3 C-C stretch a 0.66 1369 
C-C stretch <j 5.04 2055 

3sa 

out of plane bend b2 0.11 316 

in plane bend bi 0.89 509 

breathing a, 1.28 720 

symmetric Si-C stretch a, 1.51 984 
in plane ring distortion bi 0.06 1120 
symmetric C-C stretch ai 5.63 1504 

3ta 

in plane ring distortion b, 0.84 272 

out of plane bend b2 0.00 395 

symmetric Si-C stretch a, 1.24 502 

breathing a, 0.13 747 
asymmetric C-C stretch b. 0.01 1255 
symmetric C-C stretch a. 0.23 1651 
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vibration symmetry Intensity 

debeye2amir'Â 

Frequency 

4sa 

out of plane bend b2 

in plane ring distortion b, 

symmetric Si-C stretch a, 

transannular Si-C stretch a, 
symmetric C-C stretch a, 
asymmetric C-C stretch b, 

4ta 

in plane ring distortion b, 

out of plane bend b2 

symmetric C-Si stretch a, 

transannular C-Si stretch a, 
breathing a, 
asymmetric C-Si stretch b, 

5sa 

in plane rocking b, 

out of plane bend b2 

asymmetric C-C stretch b, 

C-Si stretch a, 
C-C-C bend at 

C3 ring breathing a, 

5ta 

asymmmetric C-C stretch bt 

in plane rocking b, 

out of plane bend b2 

C-Si stretch a, 

C-C-C in-plane bend a, 

C3 ring breathing a. 

0.58 

0.00 

0.51 

1.08 
0.10 
4.72 

2.69 

0.09 

1.60 

0.47 
0.19 
1.57 

2.56 

0.09 

1.81 

0.00 
0.08 
1.31 

82.03 

0.02 

0.04 

0.90 

0.96 

0.08 

279 

420 

538 

852 
1254 
1603 

363 

479 

674 

755 
1234 
1380 

373i 

257 

527 

559 
1254 
1508 

I475i 

115 

326 

536 

1124 

1685 
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Table 2. SiC3 Relative Energies 

isomer state MCQDPT/6-31G(d) MCQDPT/aug-cc pVDZ 
//FORS(12,10/1 l)/6-31G(d) //FORS(12,10/1 l)/6-31G(d) 

(zero point corrected energies 
in parentheses) 

Isa 'A 6.6 10.6(10.4) 

Isa T 10.0 9.3 (9.0) 

lta T 0.0 0.0 (0.0) 

2sa 'A 94.1 

2sa T 97.9 

2ta 79.5 

3sa A, 0.7 4.4(4.3) 

3ta 3B% 20.4 26.2 (25.7) 

4sa A. 6.8 7.8 (7.4) 

4ta 3B2 12.7 5.9 (5.4) 

5sa A, 28.1 25.2(24.7) 

5ta % 30.1 30.8(28.8) 

6sa A[ 103.4 

6ta 3Ao 82.1 
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Table 3. Si2C2 vibrational frequencies 

vibration symmetry intensity 
debeyezamu 

•Â-2 

frequency 
cm 

lsb-sigma 
symmetric bend 
asymmetric bend 
symmetric C-Si strech 
asymmetric C-Si stretch 

C-C stretch 

lsb-delta 
symmetric bend 
asymmetric bend 
symmetric C-Si strech 
asymmetric C-Si stretch 

C-C stretch 

JT„ 
JTU 

a; 
<v 
c" 

JTU 

°g+ 

au
+ 

a/ 

0.01 
0.00 
0.00 

3.82 
0.00 

0.12 
0.00 
0.00 

2.88 

0.00 

128(2x) 
344(2x) 

460 
898 
1782 

130(2x) 
357(2x) 

467 
893 
1800 

ltb 
symmetric bend 

asymmetric bend 

symmetric C-Si stretch 
asymmetric C-Si stretch 
C-C stretch 

JCU 

a„+ 

OH' 
a„+ 

0.00 

0.00 

0.00 

0.21 
0.00 

137 (2x) 

371(2x) 

474 
922 
1860 

in plane distortion 

out of plane bend 

Si-C-Si bend in plane 

C-Si asymmetric stretch 

ring breathing 

C-C stretch 

ui 
b2 

ai 
b, 

a, 

a, 

0.04 

0.04 

0.55 

0.29 

1.68 

14.24 

224i 

86 

418 

528 

647 

1881 

3tb 
in plane distortion b, 0.07 47 

out of plane bend b2 0.00 233 

Si-C-Si bend a, 0.59 386 

asymmetric C-Si stretch b. 0.76 397 

ring breathing a, 1.30 643 

C-C stretch a. 10.64 1759 
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vibration symmetry Intensity 
debeye2amu 'Â 2 

frequent 

4sb 
out of plane bend b2 0.00 ITi 

in plane distortion b, 0.59 126 

asymmetric C-Si stretch bi 1.37 361 

Si-Si stretch a. 0.57 412 

symmetric C-Si stretch a, 6.20 892 

C-Si-C bend ai 1.81 1783 

4tb 
in plane distortion b, 0.39 126 

out of plane bend b2 0.28 136 

C-Si asymmetric stretch bi 1.53 345 

Si-Si stretch a, 0.02 394 

C-Si symmetric stretch bi 9.24 895 

C-Si-C bend a, 0.80 1803 

5sb 
out of plane bend b2u 0.13 224 

in plane ring distortion bu, 1.34 424 

breathing 0.00 543 

C-C stretch a8 0.00 1013 

C-Si asymmetric stretch b2g 0.00 1026 

C-Si symmetric stretch t>3u 9.74 1066 

5tb 
out of plane bend b2u 0.04 269 

in plane ring distortion biu 0.29 411 

breathing b„, 6.03 474 

C-Si symmetric stretch b3l, 33.35 623 

C-C stretch a8 0.97 1150 

Si-C asymmetric stretch b2g 0.01 2686 
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vibration symmetry Intensity 
debeye2amu 'Â2 

Frequen 

6sb 
out of plane bend a" 0.22 244 
Si-Si stretch a' 0.06 358 
peripheral C-C-Si bend a' 0.08 484 
transannular C-Si stretch a' 1.31 627 
breathing a' 0.98 735 
C-C stretch a' 0.52 1676 

6tb 
Si-C-Si bend a' 0.11 173 
out of plane bend a" 0.01 341 
transannular C-Si stretch a' 1.25 527 
Si2-C4 stretch a' 0.21 593 

Si,-C3 stretch a' 1.21 747 

C-C stretch a' 0.49 1619 

7sb 
out of plane bend b2u 3.00 177 

Si-C symmetric stretch bm 0.01 537 

Si-Si stretch ag 0.00 570 

in plane ring distortion b2g 0.00 600 

Si-C asymmetric stretch bsu 0.78 715 

breathing &g 0.00 803 

7tb 
out of plane bend (to lOtb) b2u 0.06 261i 

Si-Si stretch ag 0.00 404 

Si-C asymmetric stretch b,„ 0.49 519 

in plane ring distortion b2g 0.00 625 

Si-C symmetric stretch biu 0.59 752 

breathing ag 0.00 794 
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vibration symmetry Intensity 
debeye2amu 'Â2 

Frequent 

8sb 
in plane distortion to 6sb b, 0.02 445i 

out of plane twist to 9sb a2 0.00 330i 

Si-Si stretch 3i 0.03 316 

C-Si asymmetric stretch b, 0.63 557 

C-Si symmetric stretch a. 3.89 722 

C-C stretch a. 1.43 1909 

8tb 
in plane distortion to 6tb b, 2109.50 1333Î 
out of plane twist to 9tb a2 38.51 919i 
Si-Si stretch a, 0.27 625 
out of plane twist a2 23.43 705 
C-Si asymmetric stretch bi 705.41 937 
C-C stretch a, 1.83 1813 

9sb 
C-Si asymmetric stretch B 0.58 272i 
Si-Si stretch A 0.04 287 
twist A 0.18 305 
C-Si asymmetric stretch B 1.04 623 
C-Si symmetric stretch A 2.71 709 
C-C stretch A 0.21 1721 

9tb 
C-Si asymmetric stretch B 0.06 142i 
twist A 0.15 296 
Si-Si stretch A 0.08 342 
C-Si asymmetric stretch B 0.31 459 
C-Si symmetric stretch A 2.30 725 
C-C stretch A 0.11 1713 

lOsb 
symmetric butterfly bend a. 0.23 262 

C-C stretch a, 0.29 419 

C-Si asymmmetric stretch bi 0.45 573 

C-Si asymmmetric stretch a2 0.00 702 

C-Si symmetric stretch ai 0.34 762 

breathing at 0.03 806 
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Table 4. Si2C2 Relative Energies 

Isomer state MCQDPT/6-31 G(d) 

//FORS(12,10/ll)/6-31G(d) 

MCQDPT (12,11 )/aug-cc 
pVDZ 

//FORS(12,10/1 l)/6-31G(d) 
lsb-A 'A 6.2 5.8 (5.6) 

lsb-I %+ 9.2 8.9 (8.6) 

ltb X 1.0 1.0(1.0) 

3sb 'A, 34.8 26.4(25.4) 

3tb % 33.4 28.2 (27.0) 

4sb 'A, 68.2 70.2 (69.2) 

4tb 3a2 58.8 44.8 (43.9) 

5sb 'Ag 0.0 0.0 (0.0) 

5tb 51.4 43.0 (44.9) 

6sb 'A' 6.0 4.2 (4.0) 

6tb 3A" 24.8 15.0(14.6) 

7sb 'Ag 82.2 76.8 (75.5) 

7tb 3A„ 55.6 47.3 (45.6) 

8sb 'A, 46.4 33.5 (32.4) 

8tb % 35.5 25.5 (25.2) 

9sb 'A 40.8 23.0(22.1) 

9tb 3B 23.5 21.6 (20.6) 

lOtb 3a2 52.2 47.1 (46.0) 
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Figure 1. Optimized MCSCF geometries for the singlet and triplet isomers of SiC3. 

Triplet bond lengths are given in parentheses. 

la (C«J 2a(C*J 
1.30 1.75 

(1.31) (1.29) (1.74) 

1.32 1.30 

(1.31) (1.29) (1.74) 

3a(C,J 

1.35 

4a (C2v) 
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Figure 2. Optimized MCSCF geometries for the singlet and triplet isomers of Si2 

Triplet bond lengths are given in parentheses. 

lb 127 177 /"-\(21S) 

4b 3b 

2.97 

lOtb 
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CHAPTER 3: ADSORPTION OF ACETYLENE ON SI(100)-(2xl) 

A paper published in the Journal of Physical Chemistry B 

Reprinted with permission. Journal of Physical Chemistry B 2004, 108, 7820. 

Copyright 2004 American Chemical Society 

Jamie M. Rintelman and Mark S. Gordon 

Abstract 

A study of a single acetylene adsorbed onto the Si(100)-(2xl) surface is presented. A 

MCSCF+MRMP2 wave function is used to study this system, which is shown to be 

significantly multiconfigurational over large sections of the potential energy surface. The 

lowest energy isomer is shown to have the acetylene adsorbed directly above a single dimer, 

di-o, where the silicon-silicon dimer bond remains intact. These results are compared with 

those from a previous DFT study. 

I. Introduction 

There is a great deal of interest in the interaction of organic molecules with the 2x1 

reconstructed silicon(lOO) surface. The primary motivation for this interest is a desire to 

combine the vast amounts of knowledge about the Si(100)-(2xl) surface, with the even more 

expansive field of organic chemistry. As the methods for manipulating and machining 

silicon wafers have become quite sophisticated, surface scientists are increasingly able to 

create micron sized gears, engines, and many other structures from silicon'. The centuries 

old field of organic chemistry encompasses the study of an extensive collection of molecules 

spanning nearly every kind of functionality known to chemists. It is not difficult to 

understand, therefore, why there is a great deal of interest in combining these two fields. If 

organic molecules can be reacted with and attached to the Si(100)-(2xl) surface in such a 

way that they retain their functionality, the utility of silicon-based materials would be greatly 

expanded. Many advances have been made in this direction2'3, and continue to be explored. 
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In recent years our group has been interested in modeling the interactions of small 

molecules with the Si(100)-(2xl) surface. It was established early on 4 that saturated 

hydrocarbons do not react with the surface; it is necessary that the hydrocarbon contain at 

least one multiple bond as a reaction center to react with the surface dimers. Acetylene is the 

simplest hydrocarbon containing a carbon-carbon triple bond. It is therefore an important 

prototype molecule, as well as being an interesting system in its own right. 

The 2x1 reconstruction of the Si(100) surface leads to rows of surface Si-Si dimers 

that are trivalent. Because Si-Si Jt bonds are very weak, these dimers have a significant 

amount of diradical character. Consequently, many recent studies^ 7 of the Si(100)-(2xl) 

surface and its reactions have suggested that a multi-reference wave function is essential for a 

correct description of these dimers and their reactions. This study was initiated to assess the 

impact of multi-reference calculations on the predicted results for the Si(100)/acetylene 

system. 

Early experimental studies of the Si(100)-(2xl)/C2H2 system disagreed initially about 

whether the silicon dimer bond was broken 8or remained intact9 upon chemisorption of an 

acetylene molecule. It was soon resolved that upon addition of an acetylene to the dimer, a o 

bond remained between the silicons. Most ab initio and DFT calculations that have been 

performed on this system agree that in the di-G (see Fig. 1), or on top configuration, the 

dimer bond remains intact10"12. Subsequent experimental studies observed two additional 

adsorption configurations: (1) endbridge, (the acetylene carbons coordinated to one silicon 

each on the same side of adjacent dimers); (2) another structure that is postulated to be a 

tetracoordinated species, with the acetylene coordinated to adjacent dimers either 

perpendicular (rbridge) or parallel (pbridge), to the surface dimers313 (see Fig. 1). It is 

universally agreed3,4'10,11,13,14 that the tetracoordinated species are higher in energy than 

either the di-o or endbridge configurations; however, it has been suggested3 that the observed 

tetracoordinated species sit in adsorption sites that are more kinetically accessible. The 

acetylene, therefore, can presumably be trapped in such sites. It has also been suggested that 

the observation of so-called tetracoordinated species are actually misinterpretations of two 

acetylenes adsorbed in the endbridge fashion 14. 



www.manaraa.com

37 

II. Computational Details 

When studying surface chemistry using quantum mechanics, one must develop a 

model of the surface that is able to capture both the local properties of the surface and the 

bulk behavior. Eliminating edge effects is important, but it must be feasible to perform the 

calculations using available computational resources. To study surface chemistry in this 

manner, it must be possible to construct a model cluster of reasonable size that captures the 

essential features of the surface. In the case of Si(100)-(2xl), the cluster must accurately 

represent the dimerized structure of the surface. The smallest reasonable one and two dimer 

clusters are Si9H12 and Si15H16, respectively (see Fig. 2). These clusters model the behavior of 

the surface well, yet are small enough to study with a reasonably high level of theory. A 

more sophisticated approach is to use an embedded cluster model, in which the quantum 

mechanics (QM) cluster is embedded into a larger bulk region represented by a lower level of 

theory. This approach diminishes edge effects while allowing the "action region" to be 

described by the highest levels of theory. In the present study, a Si15H1(, QM cluster is 

surrounded by a larger molecular mechanics (MM) cluster, in order to adequately treat 

several isomers in which the acetylene molecule is interacting with two dimers in the same 

dimer row. The details of this model are as follows. 

(a) Bulk Model: Bulk effects are taken into account using the hybrid quantum 

mechanics/molecular mechanics (QM/MM) approach called Surface Integrated 

Molecular Orbital/ Molecular Mechanics (SIMOMM) L\ This method, implemented in 

the quantum chemistry package GAMESS16 (General and Atomic Molecular Electronic 

Structure System), employs MM317 parameters in the Tinker program18. Tinker is linked 

to GAMES S to perform the MM portion of the calculation. The interface between the 

QM and MM regions is handled by terminating the severed Si-Si bonds with Hydrogens 

as link atoms. The bulk model includes 333 atoms, comprising 5 layers of silicon. The 

surface includes 18 dimers; 3 dimer rows wide by 6 dimers long (Fig. 3). 

(b) Ab Initio Region. The atomic basis set employs a mixture of all electron and effective 

core potential (ECP) basis functions. Each silicon atom has the Hay-Wadt19 ECP 

supplemented with the d function from the 6-31G(d) basis set20, giving each silicon a 
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double zeta plus polarization basis in the valence. Carbons and hydrogens have the 6-

31 G(d)21 all electron basis set. This basis set will henceforth be referred to as Mixed 

HW(d),6-31G(d). 

It has been established that the bare Si(100) - (2x1) surface has considerable 

multireference character, and therefore should be studied using a multireference method 

6 7. Often, when the surface has been saturated with adsorbates, it acquires more single 

reference character 11. This is not surprising, since the unpaired electrons (or dangling 

bonds) from which the multireference character arises, have bonded with the substrate on 

the surface. Thus, when beginning a study of the acetylene on Si(100)-(2xl) system, it is 

necessary to determine the extent to which multireference wave functions are a necessary 

zeroth order description. 

Preliminary Fully Optimized Reaction Space (FORS)-MCSCF calculations revealed 

natural orbital occupation numbers (NOONs) for some isomers that deviate significantly 

from the Hartree-Fock values of 2.0 and 0.0 for occupied and virtual orbitals, 

respectively. As expected, the most significant deviation occurs when the surface dimers 

are not fully saturated. Although some isomers, particularly the tetracoordinated species, 

are well described by single-reference wave functions, our intention to study a significant 

portion of the surface in a continuous manner precludes any possibility of using single 

reference methods to study some isomers and multireference methods for others. 

Due to these considerations the QM region is represented by a FORS-MCSCF2' wave 

function with an eight electrons in eight orbitals active space. Active orbitals include 

both n bonds on acetylene, the 7i bond on each Si-Si dimer and the four corresponding 

antibonds (see Fig. 4). 

(c) Geometry Optimizations. Geometries are fully optimized in both the QM and MM 

regions 15. Minima and transition states are characterized by the calculation and 

diagonalization of the energy second derivative matrix (hessian). A positive definite 

hessian indicates that a local minimum has been found, one negative eigenvalue indicates 

that the stationary point is a transition state (first order saddle point). No higher order 

saddle points were encountered in this study. 
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Minimum energy paths 24are performed to connect minima and transition states, using the 

second order Gonzalez-Schlegel (GS2) method23, employing a step size of 0.15 

(amu)1/2-bohr. 

Multireference second order perturbation theory 2h(MRMP2) calculations are performed 

at all stationary points to provide accurate relative energies and reaction barriers. 

III. Ground State Potential Energy Surface 

In order to include all surface minima that may be relevant to the interpretation of 

experimental data on the acetylene on Si(lOO) - (2x1) surface, five minima have been 

examined, the di-o (also called on top dimerized), endbridge, pbridge, rbridge, and cross 

configurations (see Fig. 1). Other possible adsorption configurations are not included, since 

previous studies have suggested that they are much higher in energy l0. 

A. Relative Energies and Adsorption Energies. The energies discussed in this section 

have been obtained at the MRMP2//FORS(8,8)/ Mixed HW(d),6-31G(d) level of theory. 

Adsorption energies are defined as Eads= E(surface+acetylene)-E(complex). 

E(surface+acetylene) is obtained by doing a calculation on the supermolecule, consisting of 

the surface and acetylene separated by > 100Â at their optimized geometries. E(complex) is 

the MRMP2 energy of the isomer in question. Thus, although MRMP2 is not size extensive, 

in this study, the size consistency errors 27 have been corrected for. At the FORS level the 

NOONs are exactly the same for the separated species and for the supermolecule. The 

energies are the same to 10° hartree. Thus, the FORS part of the calculation is size 

consistent, as expected for fully variational methods. 

The adsorption energies presented in this study are all positive, and indicate stable 

structures (see Table 1). In the di-o, endbridge, and cross species, the acetylene is 

dicoordinated, while the acetylene is tetracoordinated in the rbridge and pbridge species. The 

di-o (dimerized) species is the most stable configuration for one acetylene molecule on the 

Si(100)-(2xl) surface (see Table 2), with an adsorption energy of 51.2 kcal-mol '. The 

endbridge is a very low energy isomer, only 4.5 kcal mol1 less stable than the di-o species. 
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The cross species is quite high in energy, 40.6 kcal mol"1 above di-o. The energy of pbridge 

relative to the di-o isomer is 40.4 kcal mol"1, while that of rbridge is 30.3 kcal mol '. 

B. Local minima. Di-a. In the di-o configuration the acetylene is situated directly above a 

silicon dimer. Each carbon is sigma bonded to the corresponding silicon of the surface 

dimer. In the adsorbed acetylene unit, there is double bonding between the carbons and a 

bond length of 1.36Â, just slightly longer than the ethylene carbon-carbon bond length, 

1.33A. Because the acetylene is directly above the dimer, there is no strain between dimers 

in the row. Comparing the geometric parameters of the clean surface with those of the di-o 

configuration, it is clear that there is very little perturbation of the remainder of the surface 

by the acetylene molecule. The interdimer distances are virtually identical, 3.84 Â in the 

bare surface and 3.83A in di-o. Similarly, the unsaturated silicon-silicon dimer bond 

distances are 2.25Â in both the clean surface and the di-o structure. There is only a slight 

elongation of the Si-Si bond distance in the saturated dimer relative to the unsaturated dimer, 

2.32Â and 2.25Â, respectively. Some elongation is expected since the dimer partial jt bond 

has been broken. Examining the NOONs (see Fig. 5b) it is easy to see that there is very little 

interaction between the dimers in the same row. The JT and JT* orbitals on the unsaturated 

dimer and their NOONs are almost identical to those on the clean surface (Fig. 5a). This 

implies that there would be little advantage to adsorbing two acetylenes on adjacent dimers in 

the dimerized di-o configuration relative to acetylenes being on dimers separated by a great 

distance. Adjacent dimers can be considered to be essentially noninteracting7, and placing 

an acetylene on one of these dimers does not change that situation. 

Endbridge. In the endbridge isomer (see Fig. 1), the acetylene is again di coordinated, but 

now it is bridging two adjacent dimers, perpendicular to the dimer row. This leaves one 

silicon unsaturated on each dimer. This configuration is essentially a pure singlet diradical 

(see Fig. 5c), with HOMO and LUMO NOONs of 1.05 and 0.95, respectively. This isomer is 

therefore the most multi-reference of all isomers studied. Relative to the clean surface, in the 

endbridge species the intradimer Si-Si distance is lengthened by 0.12 Â (2.37Â vs. 2.25Â). 

The angle between the Si-C bond and the dimer bond (ZC-Si-Si) is 113°, 23° off normal. 

Each dimer partial JT bond has been broken, and in addition, the unpaired electrons on the 
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unsaturated surface silicons and the JT electrons on the acetylene are expected to repel each 

other. The interdimer Si-Si distances are shortened by 0.51Â and 0.21 Â for the saturated and 

unsaturated silicons, respectively (3.33Â and 3.63 vs 3.84Â), having been pulled together 

due to the adsorption of the acetylene group directly above. The saturated distance 

undergoes a larger change, since these silicons are directly attached to the acetylene carbons. 

Although the endbridge isomer is only slightly higher in energy than the di-o species, 

the impact on the surface is quite different. As discussed above, in the di-o isomer the 

addition of an acetylene molecule perturbs the rest of the surface very little, while the 

endbridge isomer has a significant effect on the geometry of the surface. Since the endbridge 

isomer is only slightly higher in energy than the di-o isomer, the favorable interaction of the 

acetylene with the surface must nearly cancel the effect of disrupting the structure of the 

surface. 

Cross. In the cross configuration (Fig. 1, 5d) the acetylene is again dicoordinated; however, 

the acetylene bridges opposite silicons in two adjacent dimers. This is an intermediate 

structure along the pathway that rotates the acetylene from the rbridge to the pbridge 

configuration (see following section). The cross isomer is also highly multiconfigurational, 

with NOONs of 1.148 and 0.851 for the HOMO and LUMO orbitals (Fig. 5d). Each dimer 

bond in this isomer is lengthened by 0.08Â from 2.25Â in the clean surface to 2.33Â. 

Because the acetylene bonds across two dimers, it pulls in the two adjacent dimers to give a 

shortened interdimer Si-Si distance of 3.56Â, 0.28Â shorter than the clean surface distance of 

3.84Â. The orbitals and C-C bond length of 1.37Â indicate the presence of a C-C double 

bond. The C-Si bonds are single bonds, with bond lengths of 1.98 Â. 

Rbridge and Pbridge. The rbridge and pbridge isomers each contain a tetracoordinated 

acetylene molecule, with the acetylene perpendicular and parallel to the silicon dimer bond, 

respectively. These are both higher energy isomers, due in part to the strain caused by 

coordinating to all four silicon atoms of the two dimers. The dimer-dimer distance is 

significantly reduced in both the rbridge and pbridge isomers. The Si-Si distance between 

two dimers in the same row is 3.84 Â on the bare surface, while for rbridge and pbridge it is 

3.37Â and 3.01Â respectively, a significant perturbation. 
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C. Pathways connecting isomers. Now, consider the pathways by which the acetylene can 

move from one configuration to another on the surface. In the following discussion, the 

vibrational frequencies that are quoted should be used as a qualitative guide to the motions 

that occur in the cluster. Due to the large number of atoms present and the significant 

amount of coupling between modes, there can be significant derealization of the normal 

modes throughout the molecule. See Table SI in Supplementary Materials for a selection of 

important vibrational frequencies. Schematics of the transition state structures are given in 

Figure I. 

Di-Cf to pbridge. In the di-o to pbridge reaction path, the acetylene is moving parallel to the 

dimer row, from being dicoordinated with one dimer to being tetracoordinated with two 

dimers in the same dimer row. The vibrational frequencies of the di-o normal modes (Fig. 

6a) that correspond to this motion from di-o to pbridge are 115 and 194 cm1. Starting from 

the other end, the analogous pbridge frequencies (Fig. 6b) that lead from pbridge to di-o are 

159 and 292 cm"1. The forward barrier for the process is 59.2 kcal mol ', while the reverse 

barrier is 18.8 kcal mol '. The imaginary mode corresponding to the motion towards minima 

on the potential energy surface has a vibrational frequency of 386.0i cm 1 (Fig. 6c). 

Pbridge to cross to rbridge. In addition to moving along the dimer row, the acetylene can 

also rotate with respect to the dimer rows. It is this motion that connects the pbridge, cross 

and rbridge configurations. The path from pbridge to rbridge will take the acetylene through 

a rotation of a full 90° in a plane roughly parallel to the plane of the surface. The acetylene 

begins parallel to the surface dimers and ends perpendicular to the dimers. The forward 

barrier going from pbridge to cross is 13.5 kcal-mol1, while the reverse barrier is 12.3 

kcal mol1. The vibrational frequency of the normal mode (Fig. 6d) at the pbridge minimum 

geometry corresponding to this motion is 279.7 cm1. The normal mode (Fig. 6e) at the 

transition state corresponding to motion towards reactants has a frequency of 535.8i cm1. At 

the cross species the twisting motion is spread over two normal modes (Fig. 6f) with 

frequencies of 395 cm 1 and 399 cm"1. 

Completing the rotation the acetylene goes from the cross intermediate through a second 

transition state to rbridge. The normal modes corresponding to rotation of the acetylene 
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parallel to the surface in rbridge, going back to cross, range from 433.2 cm 1 to 584.4 cm 1 

(Fig. 6g). The cross to rbridge pathway has a 15.7 kcal mol1 barrier in the forward direction 

and an 18.2 kcal mol1 barrier in the reverse direction at the FORS(8,8) level. At the MRMP2 

level, however, the forward barrier nearly goes to zero. Single point MRMP2 calculations 

were done at several points along the FORS(8,8) reaction path to locate the upper limit to the 

energy of the transition state. These single point calculations reveal an upper limit to the 

forward barrier of 1.3 kcal-mol \ and to the reverse barrier of 11.6 kcal mol '. The normal 

mode corresponding to motion towards the minima is at 480.35i cm 1 (Fig. 6h). 

Rbridge to Endbridge. The motion from rbridge to endbridge involves the acetylene 

moving perpendicular to the dimer row from a position in which it is coordinated to each of 

the four silicons in two dimers in the same row to one in which it is coordinated to one 

silicon per dimer, on the same side of the dimer row. The barrier in the forward direction is 

5.2 kcal-mol while in the reverse direction, going from the more stable endbridge isomer to 

the rbridge, it is 31.1 kcal-mol1. The main endbridge vibrational frequencies going towards 

rbridge are 134.6 cm 1 and 145.0 cm1 (Fig. 6i). The rbridge vibrational frequencies 

corresponding to motion towards endbridge are 229.0 cm 1 and 378.8 cm1 (Fig. 6j). The 

imaginary normal mode corresponding to motion towards reactants is 508.10 cm 1 (Fig. 6k). 

Comparison with Density Functional Theory Calculations. Now compare the 

MRMP2//FORS(8,8)/Mixed HW(d),6-31G(d) results with previous (spin polarized) density 

functional theory (OFT) results obtained by Sorescu and Jordan 10, employing the PW91 

functional, plane wave basis sets, and slab models (including eight Si atoms per layer, 

allowing a c(4x2) arrangement of the dimers) with periodic boundary conditions. While the 

comparison is with their results at 0.25 monolayer coverage (except for cross which is at 0.5 

ML coverage), the trends hold for all low coverages in their study. Fig. 7 presents a 

schematic of the potential energy surface with results from both studies, while the geometries 

are compared in Table 3. Consider, first, the two lowest energy species. Both theoretical 

approaches indicate that for one acetylene adsorbed on the Si(100)-(2xl) surface, the di-o 

species is the most stable, while the endbridge species is only slightly less stable. Relative to 

di-o, the two methods give rather significant differences in the energies of some of the less 
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stable isomers, over 17 kcal mol1 in some cases. While these are significant quantitative 

differences, it is important to note that the qualitative nature of the surface is the same in both 

studies. Except for the two highest energy isomers, pbridge and cross, the energetic ordering 

of the isomers is the same in both studies. 

IV. Conclusions 

The multireference results presented here predict that the lowest energy arrangement 

for acetylene adsorbed on the Si(100)-(2xl) surface is the di-O on top dimerized 

configuration. The endbridge arrangement is only slightly higher in energy than the di-o. 

The calculations in this study confirm that when studying the Si(100)-(2xl) surface 

the PES will be quite multiconfigurational where there are unsaturated dimers present, but 

when dimers are fully saturated there is generally just one important configuration. In the 

latter cases, single-configuration methods are likely to be reliable. 

Comparing the spin-polarized DFT and MRMP2 results for this system, the same 

trends are predicted. Both studies agree that the di-o arrangement is the global minimum for 

adsorption of acetylene on the surface at low coverage. While DFT and MCSCF predict 

buckled and symmetric dimers, respectively, for the clean surface, the geometries of the 

saturated species in this study are quite similar for both methods. However, as discussed 

above, this system has a significant amount of multi-reference character. The 

parameterization of DFT makes difficult a detailed analysis of the origin of the differences in 

results that do exist. Because there are regions of the PES that are so clearly multireference, 

it is our assertion that when discrepancies occur between DFT and MRMP2, the MRMP2 

results should be considered more reliable. It is likely that spin-restricted (e.g., RHF-like) 

DFT calculations on this system would be in much worse agreement with the multi-reference 

results. 

The evidence in this paper does not support the theory that one of the tetracoordinated 

sites is more accessible, and traps an acetylene there, but it also does not definitively rule it 

out. Both tetracoordinated species involve a significant perturbation of the surface structure, 

and the formation of 4 bonds to the surface. Forming the pbridge structure must involve 
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pulling the dimers 0.83À closer together than in the clean surface; forming rbridge pulls them 

0.47Â closer than the clean surface. Without mapping out a pathway by which an acetylene 

reaches each of these sites, it is not possible to quantitatively describe how easy or difficult to 

access they are. Their structure indicates that they are not likely to be easy to access. In 

addition to those considerations, neither of these minima are trapped by large barriers from 

getting to a lower energy species. Pbridge must get over a maximum barrier of 12.3 

kcal mol1 to get to a lower energy species, and eventually to endbridge. Rbridge is separated 

from endbridge by a barrier of only 5.2kcal mol"1. Only at very low temperatures would 

those barriers be sufficient to trap an acetylene in a tetracoordinated minimum. 
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Calculations were done to probe the deviation of MRMP2 from size consistency for 

this system. The following size consistency errors were determined. 

E(surface)+E(acetylene)-E(surface+acetylene)=21,9kcalmol-l ; 

E(surface)+2E(acetylene)-E(surface+2acetylene)=49.1 kcalmol-1 ; 2E(acetylene)-

E(2acetylene)=2.2kcal mol-l. This issue will be addressed more fully by examining a 

representative set of molecules in a later paper. 
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Table 1. Adsorption Energies (kcal-mol-1) 

isomer MRMP/FORS(8,8) DFTt 

Di-o 51.2 62.2 

Endbridge 46.7 60.1 
Pbridge 11.2 30 

Rbridge 20.8 49.3 

Cross* 10.6 38.1* 

t DFT adsorption energies are taken from Sorescu and Jordan, 
ref. 5, at a coverage of 0.25 monolayers, except * Cross for which 
the 0.5 ML coverage adsorption energy is used, because that for 
0.25 ML is not available 
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Table 2. Relative energies (kcal-mol-1) 

MRMP/Mixed//FORS(8,8)/Mixed 
Minima 
Di-a 0.0 
Endbridge 4.5 
Pbridge 40.0 
Rbridge 30.3 
Cross 40.6 

Transition States 
Di-a to Pbridge 59.2 
Endbridge to Rbridge 35.5 
Pbridge to Cross 52.9 
Cross to Rbridge 39.2 
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Table 3. Vibratonal Frequencies 

Due to delocalization of vibrational motion and coupling of normal modes, some cluster motions 
have more than one vibrational frequency associated with them. In these cases, the normal 
mode with the largest contribution to the relvant motion is listed in the first column 

vibration frequency 

di-a 

C2H2 perp to dimer row 112.41 *-< .  .  *—.  *  .  .  . .  • -

C2H2 parallel to dimer row 114.58 193.67 185.89 

cluster breathing 149.21 

dimer seesaw 157.65 

dimer row in plane twist 193.38 257.09 

both dimers, in plane twist 531.94 

acetylene in plane torsion 341.68 359.13 

unsaturated dimer buckling 220.98 

saturated dimer buckling 243.80 

unsaturated dimer stretch 503.96 

saturated dimer stretch 508.05 

acetylene/dimer C-Si symmetric stretch 720.29 

acetylene/dimer C-Si antisymmetric stretch 753.53 760.00 

H-C-Si Bend 732.01 

acetylene C-H antisymmetric wag 1020.80 

acetylene C-H symmetric wag 766.99 

acetylene C-H symmetric wag in-palne (of acetylene) 1171.14 

acetylene C-H asymmetric wag in-plane (of acetylene) 1396.38 

C-C Stretch 1575.81 

C-H Stretch antisymmetric 3302.35 

C-H Stretch symmetric 3324.75 

endbridge 

C2H2 perp to dimer row 

C2H2 parallel to dimer row 

C2H2 parallel to dimer row + surface buckle 

symmetric buckle 

acetylene quasi in plane torsion 

acetylene quasi in plane torsion/surface buckle 

dimer stretch 

acetylene/dimer C-Si symmetric stretch 

acetylene/dimer C-Si antisymmetric stretch 

acetylene C-H antisymmetric wag 

acetylene symmetric in-plane wag 

134.62 

342.72 

247.67 

261.68 

363.66 

435.52 

479.81 

635.66 

739.55 

1026.27 

1241.86 

144.98 

163.86 

458.17 

475.67 

499.23 

760.53 

200.6 
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acetylene antisymmetric in-plane wag 1432.08 

C-C stretch 1565.77 

C-H Stretch antisymmetric 3288.63 

C-H Stretch symmetric 3313.04 

pbridge 

C2H2 parallel to dimer row 
.  .  •  . . . . . . .  

159.18 291.69 350.12 

C2H2 perp to dimer row 168.07 

surface t acetylene twist 279.70 

symmetric surface + acetylene buckle 264.38 

antisymmetric surface buckle 279.70 

acetylene/dimer C-Si symmetric stretch 581.78 535.76 602.79 

acetylene/dimer C-Si antisymmetric stretch/parallel to dimer 
row 543.72 

acetylene/dimer C-Si antisymmetric stretch 620.83 663.43 678.58 

C-C stretch 891.72 

acetylene symmetric wag 1024.11 

acetylene antisymmetric wag 1024.77 1027.36 1040.16 

acetylene C-H symmetric in-plane wag 1160.83 

acetylene antisymmetric in-plane wag 1315.94 

C-H Stretch antisymmetric 3262.93 

C-H Stretch symmetric 3276.02 

rbridge 

asymmetric in-plane dimer slide 146.75 

symmetric in-plane dimer slide 154.13 

dimer buckle asynmmetric 154.79 259.62 

dimer buckle synmmetric 162.13 

C2H2 parallel to dimer row 344.41 378.22 

C2H2 perp to dimer row 378.80 229.04 

acetylene in plane torsion/surface buckle 528.79 584.41 433.21 

acetylene/dimer C-Si symmetric stretch 450.28 460.03 641.71 

acetylene/dimer C-Si antisymmetric stretch 536.91 681.60 742.40 

acetylene/dimer C-Si antisymmetric stretch/parallel to dimer 
row 571.46 

C-C Stretch 946.73 

acetylene symmetric wag 991.36 

acetylene antisymmetric wag 996.92 

acetylene C-H symmetric in-plane wag 1227.64 

acetylene antisymmetric in-plane wag 1351.97 

C-H Stretch antisymmetric 3296.60 

C-H Stretch symmetric 3316.88 
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cross 

acetylene moving diagonal to dimer row, perpendicular to C-C 
bond 
acetylene moving diagonal to dimer row, in direction of C-C 
bond 

dimer buckle asymmetric 

dimer buckle symmetric 

acetylene in plane torsion 

Acetylene torsion, symmetric surface buckle 

acetylene out of plane wag 

C-Si antisymmetric stretch 

out of plane twist 

in plane scissoring 

in plane rocking 

C-C stretch 

C-H Stretch antisymmetric 

C-H Stretch symmetric 

146.65 203.57 206.37 

171.37 521.39 

269.39 

294.97 

395.45 443.84 364.55 

562.44 

646.22 

716.63 671.02 682.88 

1000.94 

1242.57 

1417.31 

1508.84 

3285.83 

3308.29 
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Table 4. Important Geometrical Parameters. Bond lengths in Â. 

Minima Bare Surface Free Acetylene Dimerized 
FORS DFT3 

Si-Si unsaturated 2.25 2.25 
Si-Si saturated - 2.32 2,36 

Si-Si interdimer - 3.83 
Si-Si interdimer saturated - -
Si-Si interdimer unsaturated 3.84 
C-C - 1.21 1.36 1.35 
C-Si - 1.93 1.90 

1.92 

Transition States Dim2p P2cross Cross2r End2r 
Sil-Si2 2.31 2.32 2.27 2.27 
Si3-Si4 2.36 2.32 2.26 2.26 
Interdimer Sil-Si3 3.41 3.25 3.48 3.56 
Interdimer Si2-Si4 3.10 3.25 3.52 3.40 
C-C 1.49 1.47 1.44 1.47 
C-Sil 1.95 1.99 1.96 2.65 
C-Si2 2.01 2.67 2.73 1.95 
C-Si3 3.15 2.66 2.41 2.35 
C-Si4 2^28 L99 L97 1.95 

3 DFT geoemetries are taken from ref 5, Sorescu and Jordan 

Endbridge Pbridge Rbridge Cross 
FORS DFT= FORS DFT= FORS DFT® FORS 

2.37 2.39 2.30 2.36 2.27 2.29 2.33 
2.46 2.36 2.29 

3.56 
3.33 3.01 3.37 
3.63 - -
1.36 1.36 1.60 1.56 1.57 1.51 1.37 
1.94 1.92 2.05 2.06 2.00 2.00 1.98 

1.92 Z06 2.01 

£ 
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Figure 1. Stationary points 
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Figure 2. One and two dimer clusters 
dimer silicons are colored purple 

56 

Si9H12: 

One dimer cluster 

Si9H12: 

Two dimer cluster 
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Figure 3. Bulk model 
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Dimer jt 
bonding orbitals 

Dimer xt* anti-
bonding orbitals 

Acetylene jt 
bonding orbitals 

Acetylene JT* 

anti-bonding 
orbitals 
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Figure 5. Orbitals 

Numbers below orbitals are Natural Orbital Occupation Numbers that 
represent the number of electrons in that orbital 

(a) Bare Surface: 

(b) DLm 

1.669 

(c) Endbridge: 

1.051 

(d) Cross: 

1.148 
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Figure 6. Normal modes 
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Figure 7. Composite minimum energy path 

-#—MRMP Relative Energies 

-«—DFT Relative Energies 

DFT relative energies are taken from Sorescu and Jordan, ref. 5, at a coverage 
of 0.25 monolayers, except *Cross for which the 0.5 ML coverage adsorption 
energy is used, because that for 0.25 ML is not available 
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CHAPTER 4: MULTI-REFERENCE SECOND-ORDER PERTURBATION 

THEORY: HOW SIZE CONSISTENT IS "ALMOST SIZE CONSISTENT"? 

Jamie M. RintelmarT, Ivana Adamovic", Mark S. Gordon" 

Abstract. 

A systematic study of the deviation from size consistency of the MRMP2 multi-reference 

second order pertubation theory method is presented. The size consistency error is shown to 

depend on the number of monomers in a supermolecule calculation, size of basis set, number 

of correlated valence electrons, and size of active space. HF, F2, and N2 are used as test cases, 

with stretched bonds, to include simple, well-defined multi-reference character. This is 

essential in ensuring that MRMP2 is being tested as a multi-reference method. 

Introduction. 

Among his set of criteria for what constitutes an acceptable "model chemistry", Professor 

John Pople had size consistent high on the list. For a method to be size consistent, at 

minimum the energy of a supermolecule A—B, with fragments A and B separated by a long 

distance must be the sum of the energies computed separately for A and B. Indeed, a major 

reason for the great popularity of second order Moller-Plesset perturbation theory (MP2)1, as 

opposed to other perturbation theory formulations, is the fact that MP2 is size consistent2. On 

the other hand, truncated configuration interaction (CI) wave functions, such as the popular 

singles and doubles method (CISD) are not size consistent. 

°° The work presented in this study was performed equally by Jamie Rintelman and Ivana 
Adamovic under the supervision of Prof. Mark Gordon. 
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The increased flexibility that comes with multi-configurational self-consistent field 

(MCSCF) wave functions is critical to the description of many chemical phenomena, 

especially those that involve near degeneracies, such as one encounters as bonds are being 

broken or formed. If an MCSCF wave function is formulated using the complete active 

space (CASSCF)3 or equivalently, a fully optimized reaction space (FORS)4, and one uses a 

consistent active space, the resulting wave function is properly size consistent. However, a 

simple MCSCF wave function, like its Hartree-Fock (HF) analog, does not account for the 

so-called 'dynamic' correlation effects. For HF-based methods, dynamic correlation is 

incorporated using a variety of approaches, including MP2 (size-consistent) and CISD (not 

size-consistent). If one is starting from a FORS MCSCF wave function, the analogous 

methods would be multi-reference second order perturbation theory (MRPT2) or multi-

reference CI (MRCI). The most common implementation MRCI is the singles and doubles 

analog of CISD, called MR(SD)CI. As is the case for CISD, MR(SD)CI is known to be size 

//«consistent. Fortunately, for both CISD and MR(SD)CI there are simple corrections to 

approximately correct for the size-consistent error by estimating the contributions from 

higher excitations'1. 

The MRPT2 approach for recovering dynamic correlation starting from an MCSCF wave 

function has become popular because, like its single-reference analog MP2, it is 

computationally efficient when compared with the alternative of MR(SD)CI. Unlike its 

closed-shell single reference counterpart, MRPT2 is not uniquely defined. Consequently, 

thus, there have been several alternative implementations, including CASPT26 of Roos' 

group, MROPT7 of Davidson's group, Hirao's MRMP28, and Nakano's MCQDPT2'. 

Unlike MRCI, for which the lack of size-consistency is clear, the error in MRPT2 methods 

depends on the choice of the zeroth order Hamiltonian. This study focuses on MCQDPT2 

and MRMP2, which are equivalent when the multi-state MCQDPT2 theory is applied to a 

single state. 
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While the various flavors of MRPT have seen wide application, its size extensivity and size 

consistency properties have received surprisingly little attention. In a recent paper, Witek, 

Nakano and Hirao10 used Ne dimer as a test of size-consistency, or lack thereof, and 

concluded that their methods are "almost size consistent; the largest deviation from size-

consistency is 0.18 kcal/mol. Very large errors from size-consistency are observed for the 

MRCI method..." However, Ne and Ne2 are essentially closed shell, and therefore do not 

have the very property for which the method was developed. Thus, the multi-reference 

nature of MRPT is not being tested, and their study is essentially a comparison of the single 

reference MP2 (known to be size-consistent) and CISD (known to be size-inconsistent) 

methods. 

Presented herein is a systematic study of size-consistency errors in MRMP2, and the factors 

that affect the magnitude of these errors. 

Method. 

The size consistency error (SCE) is defined as the difference between the sum of the energies 

obtained from the separate monomer calculations and the energy obtained from a calculation 

in which all the monomers are present but separated by distances sufficient to guarantee no 

interactions between them (the "super-molecule" calculation). Thus, for the A—B system 

discussed above, 

SCE=IE(A)+E(B)-E(A—B)l. (1) 

The above notion of size consistency can be impacted by several parameters that define the 

size of the model system in different senses, including: 

1 ) number of monomers 

2) size of the basis set 

3) number of electrons 
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4) size of the active space 

The aim of the present study is to examine the impact of each parameter in turn, on the SCE. 

The details of each study are given below. 

Because MRMP2 is a multireference method, it is important to include test cases that are 

multireference in nature. This is accomplished here by choosing molecules well suited to 

testing the four size criteria, and then stretching bond lengths to ensure that there is 

significant occupation outside the single reference. Bond lengths and natural orbital 

occupation numbers (NOONs) are listed in Table 1 for HF, F2 and N2, the three test 

molecules chosen for this study. NOONs indicate the number of electrons present in an 

orbital. N2 is the least multireference of the set, with o and o* occupation number close 

enough to closed shell to be described with a single reference wave function, but with 

occupation numbers for the JT and JT* orbitals well outside the range in which a single 

reference wave function would be appropriate. 

Now consider the following points: 

1) To study the dependence of the SCE on the number of monomers, up to six HF molecules 

are considered, using an active space for each HF that consists of two electrons 

occupying the o and o* orbitals. The active space will be denoted (2,2). The presence of 

well-defined, yet simple, multi-reference character is guaranteed by stretching the H-F 

bond to 1.6Â. The choice of HF simultaneously facilitates the second study, on the effect 

of basis set, described below. 

2) To study the basis set effect on the SCE, a system that can be described by a wide range 

of basis sets and remain computationally tractable is needed. The HF molecule is 

described by two basis sets due to Pople and co-workers, the 6-31G(d,p)" 12 and 6 

31 lG(d,p)13, and three correlation consistent basis sets, cc-pVDZ, cc-pVTZ, and cc-

pVQZ, by Dunning and coworkers14. In addition, the latter three basis sets facilitate an 

extrapolation15 of the one-particle basis to the approximate complete basis set (CBS) 
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limit. Furthermore, we combine the first two studies so that the effects of one may be 

removed from the other. Thus, calculations using all five basis sets are carried out on one 

to six HF molecules. 

3) In examining the effect of increasing the number of electrons the comparison of systems 

with many subtle chemical differences is unavoidable. First, it is sensible to choose HF 

since data on effects 1 and 2, above, will be available should their influence become 

important. Then, given the constraints of tractability, the (2,2) active space, and the desire 

to increase the number of chemically relevant valence electrons (rather than inactive core 

electrons), a natural choice is F2. Since the active space is the same as that used for HF, 

the additional valence electrons test the impact that an increase in the valence dynamic 

correlation (i.e. the MP2 part of the calculation) has on the SCE. As for HF, the single 

bond of F2 is stretched to ensure multi-reference character. The cc-pVTZ basis is used for 

F2-

4) N2 is chosen to examine the impact of increasing the active space since its triple bond 

permits three well defined spaces: (2,2) including o and o\ (4,4) including both jt and jt* 

orbitals, and (6,6) including o, c*, Jt, and jt*. The cc-pVTZ basis is used for these tests. 

Finally, several of the above factors are combined in an example to illustrate that the 

magnitude of the size consistency error is significant in 'real world' applications. This 

example is taken from a study on the reaction of acetylene on the Si(100)-(2xl)16surface, and 

includes the Si15HU) cluster with one and two acetylenes, and the Si9Hl2 cluster with one 

acetylene. The silicon atoms have the Hay-Wadt17 effective core potential basis set 

supplemented with d functions from the 6-31G(d)12 basis. The 6-31G(d)u basis is employed 

for C and H. The GAMESS program was used for all calculations18. 
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Results/ Analysis. 

The dependence of the SCE on the number of monomers and the basis set is shown in 

Figures 1-3, and Tables 2-4, for all cases. The SCE grows rapidly with the number of 

monomers in the supermolecule calculation. Figures 4 and 5 show that the error per 

monomer is approximately linear. This suggests that the SCE can be characterized as a many-

body effect. Assuming the error for two monomers is the two-body error, the SCE can be 

approximated by scaling this two-body interaction by the number of unique monomer pairs. 

That is, 

(SCE). = (SCE)2Xn(n-l)/2 (1) 

where n is the number of monomers. Plots of equation (1) using the CBS (SCE)2 for HF and 

the cc-pVTZ (SCE)2 for F2 are compared with the exact SCE in Figures 1 and 2, and found to 

match reasonably well. Note that deviations begin at n=4, the range at which there are now a 

significant number of 3-body and greater interactions; even so, at n=6 the two-body 

approximation still recovers 84% and 87% of the total error for HF and F2, respectively. 

Now consider the effect of basis set size. Each of the five basis sets is used to calculate the 

MRMP2 energy for 1 to 6 HFs. The shape of the curve is qualitatively the same for each 

number of HFs (Fig 6), which indicates that the many-body effect described above is 

independent of the chosen atomic basis set. While HF has 20 basis functions with both the 6-

31G(d,p) basis and the cc-pVDZ basis, the 6-31G(d,p) lies slightly off the curve. This is 

most likely simply due to the fact that the basis sets are slightly different. 

Although the shape of the curve is similar for all of the basis sets, there are important 

quantitative changes as the basis set is increased. As an example, consider the error in size 

consistency for n = 3 as the basis set is increased. For the smallest, 6-31 G(d,p) basis set, the 

SCE is ~ 3 kcal/mol. For the largest basis set, cc-pVQZ, this increases to ~ 5 kcal/mol, and 

at the CBS limit, the SCE is ~ 6 kcal/mol. So, the SCE approximately doubles as one 
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increases the basis set from a modest one to the CBS limit. This is a substantial basis set 

effect. 

Since the basis set effect has been demonstrated for HF, the analysis of F2 was limited to one 

basis set, cc-pVTZ (Figure 2 and Table 3). F2 shows a significant increase in SCE over HF. 

HF and F, are analogous molecules, in which H and F each have one unpaired valence 

electron being shared to form a single bond. However, F2 has nearly twice the number of 

"observer" valence electron pairs that are included in the MRMP2 (dynamic correlation) 

step. The fact that the SCE increases dramatically when H is replaced by F suggests that the 

additional valence electrons that are correlated in the perturbation step exacerbates the 

problem. While the absolute error is much larger for F2 than HF, the SCE divided by the 

total energy is also larger. 

The MRMP2 energy was calculated for N2 with three different active spaces, using the cc-

pVTZ basis set, to examine the active space effect on the SCE. The results are presented in 

Table 4 and Figure 3. The factorial scaling of FORS-SCF with the size of the active space 

limits the range over which investigations of active space dependence are practical. In order 

to see a trend the smaller active space must be a subset of any larger active space in order to 

sensibly compare the two. There are two important observations to note. For a given active 

space, the increase in the SCE is qualitatively similar to that illustrated earlier for HF and F2; 

a greater than linear increase with the number of N2 molecules. Second, for a fixed number 

(2) of N2 molecules, the SCE decreases as the active space is increased. This is almost 

certainly because a larger part of the correlation problem is being treated in a size consistent 

manner for the larger active space, i.e. Full-CI within the active space. 

Acetylene on Si(100). 

The possibility that size consistency for the MRMP2 method could be a serious issue was 

first discovered during a study of the adsorption of acetylene molecules on the Si(100)-(2xl) 
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surface16. In order to determine the adsorption energy of one, two or more acetylenes on the 

surface, one must compare the energies of the complex and of the separated reactants. It is 

the computation of the energy of the separated reactants that involves the issue of MRMP2 

size consistency. The surface models employed were Si9H12 and Si15H,6. The SCEs for 

Si15H16 plus one and two acetylenes, and Si9H12 plus one acetylene, are shown in Table 5. 

The errors are sizeable, as is the case with the test systems discussed above, and cannot be 

neglected without disastrous effects on reported adsorption energies. 

Note, as well, that the error for Sil5H16 + 2 C2H2 can be reasonably approximated as the sum 

of the two-body errors: 2(Sil5H16 + C2H2) + (C2H2 + C2H2) = 2*21.9 + 2.2 = 46.0 kcal mol ' 

with 49.1 kcal-mol1 for the exact error. This 3.1 kcal-mol ' difference is too large to 

recommend the use of the two-body approximation for quantitatively estimating the exact 

size consistency error. 

Conclusions. 

The calculations presented here emphasize the importance of knowing the limitations of a 

method when using it. While MRMP2 can be quite accurate and useful for relative energies, 

in contrast to MRCI, there is currently no simple way to estimate the MRMP2 SCE. It is 

therefore important that supermolecule calculations be done when necessary to eliminate any 

size consistency errors. This should never be prohibitively expensive, since, if one can 

afford a calculation of the complex, the calculation of the supermolecule should be no more 

expensive. Of course, if the expense of computing the complex stresses the limits of 

resources at ones disposal, it may be difficult to do an equally expensive supermolecule 

calculation. 

The many body effect present in the growth of this error with respect to the number of 

separated reactants is quite startling. While one mediating factor may be that most 

applications are likely to involve no more than two separated reactants, the error can still be 

on the order of several kcal/mol, as illustrated with the test cases in this study. 



www.manaraa.com

71 

The authors suggest that the phrase "almost size consistent" is an inappropriate and 

misleading characterization of the MRMP2 method. 
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Table 1. Natural Orbital Occupation Numbers 

HF - bond distance 1.60Â 
6-31G(d,p) 6-311G(d,p) cc-pVDZ cc-pVTZ cc-pVQZ 

1.7623, 0.2377 1.7662, 0.2338 1.7645, 0.2355 1.7731, 0.2269 1.7756, 0.2244 

F2- bond distance 1.50Â 
cc-pVTZ 

1.7662, 0.2338 

N2 - bond distance 1.50Â 
cc-pVTZ 

(2,2) (M) (6,6) 
0,0* 1.9564, 0.0436 n/a 1.9323, 0.0681 

TT,TT* n/a 1.7539,0.2461 1.8042, 0.1956 
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Table 2. size consistency error (hartree) for HF as a function of basis set and number of HF monomers 

#HFs 6-31G(d,p) 6-311G(d,p) cc-pVDZ cc-pVTZ cc-pVQZ CBS two-body SCE 
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
2 0.00169 0.00174 0.00159 0.00234 0.00266 0.00284 0.00284 
3 0.00518 0.00536 0.00487 0.00724 0.00826 0.00884 0.00000 
4 0.01058 0.01100 0.00996 0.01496 0.01719 0.01839 0.00000 
5 0.01837 0.01883 0.01698 0.02582 0.02991 0.03200 0.00000 
6 0.02769 0.02911 0.02614 0.04028 0.04727 0.05053 0.00000 
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Table 3. Size consistency error (hartree) as a function of number of F2 

monomers per calculation 

#F2S F2 (cc-pVTZ) two-body approximate 
SCE 

1 0.000000 0.000000 
2 0.005307 0.005307 
3 0.016401 0.015921 
4 0.033874 0.031842 
5 0.058484 0.053070 
6 0.091235 0.079605 
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Table 4. Size consistency error (hartree) as a function of active space and 
number of N2s per calculation 

#N2S (2,2) active space (4,4) active space (6,6) active space 
1 0.000000 0.000000 0.000000 
2 0.016575 0.015733 0.011497 
3 0.051809 0.053651 
4 0.108261 
5 0.189039 
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Figure 1. Size consistency error as a function of the number of HFs in the 
supermolecule 
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Figure 2. Size consistency error as a function of the number of F2 

molecules 
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Figure 3. Size consistency error as a function of the number of N2 

molecules 
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Figure 4. Size consistency error per HF as a function of the number of HFs 
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Figure 5. Size consistency error per F2 molecule as a function of the 
number of F2s 
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Figure 6. Size consistency error as a function of the number of basis 
functions per HF 

0.050 

0.045 cc-pVQZ 

0.040 

cc-pVTZ 
0.035 

0.030 

« 0.025 
CC-pVDZ 

0.020 

0.015 

0.010 

0.005 

0.000 
60 80 0 20 40 100 120 

number of basis functions 



www.manaraa.com

83 

CHAPTER 5: EXCHANGE REPULSION IN THE GENERAL EFFECTIVE 

FRAGMENT POTENTIAL (EFP) METHOD 

Jamie M. Rintelman and Mark S. Gordon 

Abstract 

Presented herein are energy and gradient expressions for the ab initio-EFP exchange 

repulsion interaction in the effective fragment potential method. The effective fragment 

potential method contains terms representing Coulomb, polarization, and exchange repulsion 

+ charge transfer effects included as one-electron terms in the ab initio Hamiltonian. In the 

original implementation, the exchange repulsion + charge transfer term is fitted to a potential 

derived from calculations on the water dimer. The analytical exchange repulsion energy and 

gradient expressions presented here represent a step towards eliminating this fitted term. 

Without the fitted term a potential can be generated for any solvent in a single ab inito 

calculation. Approximations are made to the two-electron terms and some of the one-

electron terms to produce an efficient analytical approach to evaluating the exchange 

repulsion energy and gradient. 

I. Introduction. 

The majority of chemical reactions occur in solution. In many areas, such as biochemistry, 

the natural solvent is water. However, many other solvents are common in organic and 

inorganic chemistry. It is no surprise then that quantum chemists are increasingly motivated 

to develop and utilize methods that enable the treatment of solvent effects, as they can 

significantly alter the character and mechanism of a reaction. 

Solvent models belong to one of two classes: continuum or discrete. Continuum solvent 

models present an efficient approach to simulating the presence of a bulk solvent. They 

reproduce the behavior of the bulk well by surrounding the solute with a dielectric 
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continuum. However, continuum models do not include the interactions between the solute 

and individual solvent models. 

Discrete solvent models replace each individual solvent molecule with a potential derived or 

obtained from quantum mechanics for that particular molecule. This is a more expensive 

approach, but can explicitly treat the direct interaction between the solute and solvent, which 

is more robust than the continuum approach. For a large number of solvent molecules, 

discrete methods have the complication of requiring adequate sampling of the configuration 

space. With a small number of solvent molecules this can be done using chemical intuition 

or simply placing the solvent molecules in every possible coordination; however, with a 

larger number of solvent molecules this is nearly impossible, and a simulation method like 

Monte Carlo or molecular dynamics is required. The greater complexity of the discrete 

approach to solvation over continuum approaches is usually outweighed by the greater 

accuracy achieved with discrete solvent models. It may be that the best approach involves a 

combination of continuum and discrete methods1. 

II. Overview of the effective fragment potential (EFP) method 

The EFP2 method is a discrete solvent/liquid model that was originally developed for water. 

The system is divided into two regions, ab initio and EFP. The ab intio region includes the 

solute or reaction of interest and perhaps a small number of ab intio solvent molecules 

directly involved in the reaction. The EFP region includes all of the additional solvent 

molecules represented by EFPs. 

The original implementation3 3 of the EFP method was based on the Hartree-Fock (HF) 

approximation, and includes (1) Coulomb (2) polarization and (3) exchange repulsion, and 

charge transfer. These interactions occur between the EFP and ab initio regions and between 

pairs of effective fragments. The EFP interactions with the ab intio region are added as one 

electron terms to the ab initio Hamiltonian. The interactions within the EFP region are 

simple potentials, since the EFPs themselves are classical potentials. The Coulomb and 
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polarizability terms are based on properties of the solvent monomer and can be generated by 

a single ab initio calculation on that monomer. In the original EFP implementation, 

henceforth referred to as EFP1, the third term is a 'remainder' term containing all effects 

from HF not included in the first two terms. The remainder term is fitted to a functional 

form, based on the water dimer potential. 

The success of the EFP1 method has led to the desire to remove the inconvenience of fitting 

the third term, so that the methods can be easily and generally extended to any solvent or 

liquid. For a general model that includes additional contributions, such as dispersion, this 

remainder term would require additional analytic functions to include all of the effects that it 

would have to model, thereby making the fitting process more complex. The alternative 

approach is to derive general expressions, from first principles, for each interaction that is 

represented in the EFP1 remainder term. First among these is the exchange repulsion. This 

requires the derivation of expressions that accurately account for the exchange repulsion 

interaction between EFPs and between an EFP and the ab initio region. The EFP-EFP 

exchange repulsion interaction has been developed and implemented by Jensen and 

coworkers6,7, and an expression for the ab initio/EFP energy8 has been reported. 

III. Ab Initio/EFP Exchange Repulsion Energy. 

Each ab initio/EFP pair can be defined as a bimolecular system in which the RHF wave 

function of each isolated molecule A and B is expressed in terms of orthonormal molecular 

orbitals (MOs), for which the intermolecular overlap is nonzero. This allows one to express 

the total energy in terms of the energies of the isolated molecules plus intermolecular 

coulomb and exchange repulsion energies2. The exchange repulsion energy can then be 

expressed in terms of the intermolecular overlap, through second order. 

The exchange repulsion energy between the ab initio region and an EFP8, is given by 
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£» .-zXrtm-*X%siw+<nvZn\ 
+XS&mk+vï+J:V s,w+4) - 2X(M |yy) 

(1 )  

where the convention, here and throughout this paper, is that A signifies the ab initio piece 

and B signifies an EFP. For two-electron integrals a superscript of A or B denotes a hidden 

sum over obitals on that piece 

additionally, throughout the paper a primed index i.e. n\ is always on the EFP region, as is j. 

Unprimed indices are in the ab intio region. 

For potential energy integrals a superscript A or B indicates that piece over which the sum 

over nuclear centers occurs; 

The orbitals on the ab initio piece are optimized, and will be discussed later in this section. 

The EFP orbitals on the other hand are localized molecular orbitals (LMOs), calculated using 

the Boys localization procedure9 which are determined during the initial EFP construction 

process and then frozen throughout the subsequent calculations. The LMOs, as well as the 

Fock matrix and other properties, for each EFP are generated with a single separate ab initio 

calculation, and then are included as input data. The internal geometry of the EFP is defined 

by the user in this calculation, and frozen thereafter. The EFP data needs to be generated 

only one time, and can then be stored and reused. Likewise, an EFP needs to be generated 

only once for each type of solvent molecule, since the EFP is based on the properties of the 

isolated monomer. 

i-e- Jfj =Yj&\nn) 

4 = 

and (ij| kl) = J (rj ̂  (rj^YI k ) V/ k ) 
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Now consider the ab initio orbitals. The variational derivative of Eq. (1) gives an exchange 

repulsion Fock matrix. 

x"=-I* H ij) - il % [i(v;+g; )+£ V;s„ ' 

(4<4zl"»:>-<*m|/') - («!>»)) 

+E,X[E,\('r«,-(«ly/»+5:„(v;+4)" 

+I>s-[XX(c-<™tu»" 

(2) 

where = 

When Vmi
XR is added to the ab initio Fock matrix during the orbital optimization procedure, 

the ab initio orbitals are optimized with respect to the ab initio/EFP exchange repulsion 

interaction. Using these orbitals to evaluate EXR in Eq. (1) gives the ab initio/EFP exchange 

repulsion energy. 

This exchange repulsion Fock matrix is important for later formulation of gradients. Having 

optimized orbitals ensures that the Lagrangian is symmetric, that matrix elements between 

occupied and virtual orbitals are zero. This greatly simplifies the derivation and 

implementation of the derivative expression by allowing the replacement of derivatives of 

coefficient matrices with derivatives of overlap matrices10. 

IV. Ab Initio / EFP EXK approximations. 

Both Eqs (1) and (2) contain two-electron terms which would be too expensive to evaluate 

exactly. A number of approximations are made to reduce the expense of these two-electron 

terms, as well as some of the one-electron terms in these expressions. The approximations 
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used here are based on either a multipole expansion11 or a spherical Gaussian overlap(SGO) 

approximation12, and have been previously reported8. They are explained below. 

Previous applications of the SGO approximation have used localized orbitals to maximize the 

accuracy of this approximation, and have shown that errors with canonical orbitals are 

unacceptably large7. Here, the ab initio orbitals cannot be localized, since localizing the 

orbitals after each orbital optimization step would be prohibitively expensive. Instead the 

SGO approximation is applied to the integrals in the atomic orbital (AO) basis, taking 

advantage of the inherently localized nature of AOs. The integrals are then transformed to 

the MO basis. 

Two-electron terms. 

There are three types of two-electron integrals that must be considered, depending upon the 

number and combination of orbitals from the ab initio and EFP pieces. These three types are 

{AB\AB), (AZ?|AA), and (AA|55), where A denotes an ab initio orbital and B denotes an 

EFP orbital. 

•(AB|AB) integrals. The integral (ij\ij) is first rewritten with the ab initio MOs 

expanded in the AO basis, ^C (/xj\vj). The SGO approximation is then applied 
/leA veA 

directly to {fij\ vj) as follows. 

Xc„, w 

V K J 

O ™2"/vr'~HRM™Ry) 
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Mv/> - ̂  Ja "à' S«.Â/» 
M vy 

i 2a^j(xVj 2 

'^y+«vy 

(3) 

where a„, = -—ln|Sw-| 

F0 is the incomplete gamma function of order 0, and can be evaluated using the relationship: 

f.[o] = i 

One need not be concerned with a possible discontinuity as t approaches zero, since t will 

never be very close to zero without being identically equal to zero, and this will only occur in 

the case that = Rv. 

•(A5| AA) integrals will be also be expanded in the AO basis, i.e. 

(ij\nn) - ̂  C jCXnCan (jdj| Ac) . These integrals must be approximated first with a 
1.1,1,a 

multipole expansion, then with the SGO approximation, since applying the SGO 

approximation directly would lead to singularities for Rx = R^ when the AOs are on the 

same atomic center. 

Ha w 

v % y 

(4) 
jXo.SGO 
lHJ 

where the multipole expansion is always applied to the pair of ab initio orbitals and R, and 

Ry are Gaussian product centers 

R 
a R +azRz 

^ -J±—t 1—where a -a,= a -, due to the SGO approximation 
" a„ + a, lU ./ 

R R 

(5) 
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R 81, 

In cases for which the AOs are not primitive Gaussians, but basis functions constructed from 

a contraction of several primitives, Rq is not well-defined, since a contracted Gaussian 

function does not have just one, but several exponents. The multipole expansion must, 

therefore, be applied either to the integrals over primitive Gaussians or a further 

approximation must be made. The R& term can be approximated with the dipole integral 

(A|r|(j) , removing the need to apply the approximation to primitive Gaussians13. The utility 

of this further approximation depends upon the degree of contraction of the basis set. 

>(AA\BB) integrals are simplified using a multipole expansion applied to the EFP 

LMOs: 

( i k \ j j )  
ri ~Ry 

(6) 

These integrals are evaluated in a manner that is analogous to the evaluation of 

electron-nuclear attraction integrals; here the nuclear charge is replaced with the electronic 

charge of -1. 

One-electron terms. 

•Vy , the electron - nuclear attraction integral between the ab initio nuclei and orbitals 

on both the ab initio and the EFP parts, can be simplified using the SGO approximation: 

(7) 
lie. A 

{ C/y \ 2 

\ n ) leA 

' V* is treated with a multipole expansion, and replaced with 

V: 
-z, 

/EA Rjl 
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F£ is replaced with F;l + V®'P,R, where V^P,' B , the ab initio/EFP intermolecular coulomb 

interaction, is evaluated using a distributed multipolar analysis, as implemented in EFP13 \ 

V. Gradients 

Geometry optimizations of ab initio/EFP complexes to find energy minima requires 

the derivative of the energy with respect to the atomic positions. Ab initio and EFP atomic 

centers will be treated separately, because the internal fragment geometries are frozen, and 

the fragment LMOs are frozen. Thus, the derivation is presented in two steps: (1) derivatives 

with respect to ab initio atomic centers and (2) derivatives with respect to EFP atomic 

centers. 

(1) Derivatives with respect to ab initio atom centers. The first term is used to illustrate each 

step in the derivation process; the result is then summarized for the entire energy expression. 

First, consider the derivative of each term, using the chain rule, showing the explicit and 

implicit dependence of the integrals on the atomic positions. This is made clearer by 

expanding the MOs in the AO basis. 

The superscript a indicates a derivative with respect to a coordinate on center a. The last two 

terms are equal to zero, because the EFP LMOs are frozen, and the first and second pair of 

terms can be combined, due to symmetry, to give only two terms. 

3*., 

= 1 ' +c,,c„, (/Ty I v j )  + c„,c„ (m/| v" j )  •  

l+c„ ,c„ ,  ( / , / 1  v j )+c,„c„  (u j \v f )  

(8) 

(9) 

X {2C;My) + 2(i"y|y)} 
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This expression cannot be used as written, because the Cfll  are matrices of numbers, and 

therefore C"^ would require solution of the time-consuming coupled perturbed Hartree-Fock 

equations. However, Eq. (9) can be rewritten using the orbital response term, which allow us 

to replace the derivatives of coefficient matrices with derivatives of overlap matrices10. 

^ = XII{2C:,<w|y> + 2{/-y|,y>} 
" « /.leAieAyefi 

= X 1  L { 2 C „ v : < w | y )  +  2 ( i " y | ' y ) }  
fieA i,meA jeB 

= X I{2CIM<y>+2(«'y|//)} 
i.meA jell 

E E{ U l (W0 + (v|m/)) + 2( i " j | i j ) }  
(10) (, me A yefl 

=E{ E u »ù(mj \ i j )+  X ^',('7|^> + 2('"/|':/)r 
/efl [m.jeA m,ieA J 

In the second sum, interchange i and m, and recombine sums 

=xf X (y:+v:)<"y|'y>+2(i"y|,y)} 
yefl [M.zeA J 

where C'=XC„,„'/: 
we A 

The derivative of the orthonormality constraint 

E CumFuvCiv ~ & mi 
/J.veA 

fi+s'i+f:,=o do 

c 
can now be used to eliminate U"mi + U"m : 

X X -S„{"'j\ij) + 2(i'j\ij)\ (12) 
, ; ! ' • • I 

giving an expression containing terms that are all straightforward to evaluate. 
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Carrying out each of these steps on the entire energy expression gives the following 

expression for the derivative of the energy with respect to the ab initio atomic positions. 

21 V f + G ?  )+x; F",K 

+^TXs'\XM'+sÂv^Ji)-TMik\jf) 

+ 
'ZW+W *K(vi*4)+s,{vf + J A" 

+xi,x>: 

-Z,S<alyy>+$«(«U>" 

+Si/[2(V^+Gi) + X>/X" 

-st [!>,/«'+ s i , ( v S + J î ) - ' L l  s »  < «  I U )  
-s„ [s; v:«+s* k;+^)-xx 

2[4(zy|mzz) - - (m|ym)] 

[4(z'/( |/?m) - (/'/?/1/en) - (m|/(A/z)] 

• II, « M?'+Vff+», UH)- X, (# W - $« (H»)} 

+x:„„x;« 

(13) 

(2) Derivatives with respect to EFP centers. A similar procedure is used to obtain the 

derivative of EXR with respect to EFP atomic positions. Many of the terms are equal to zero 

in this case, because the EFP LMOs are frozen. Again, the first term is used to illustrate the 

procedure. 

<CX 

= -2X;i;X"X* {(f/liff + 2Cl,<-V'|y) + 2C» </vy|y>} 

(14) 

The Cb on EFPs are equal to zero, because the EFP LMOs are frozen, giving 
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Derivatives of coefficient matrices are replaced with orbital response terms, Ub (cf., 

Eq. (11)) 

-xxxxa^+^^M) 

Orbital response terms are then replaced with derivatives of overlap matrices 

-XXXÀ^-U'nM)} 

However, the S1^ = 0, since the basis functions, and therefore MOs on A, do not 

depend upon the positions of the EFP atoms. Therefore, the expression is simply 

-ex BO (in i =-2x;x< A X"™1 ft / . .i . .\b 
H 

=-2x:x x:.2c,,('>"i'y> 

(15 )  

The full derivative of EXR with respect to EFP positions is: 

ag* = ̂ X;X ('/i«y)+ 

-2X:x:<2(K;+G.;)+X>« 

(i|v"|/)+c;') 

+ 

+ 

2x;'x>:| x;v5'+sf(v,"+'i)- zx <«uo 

+2Z„,(//(K"') 

(16) 
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VL Gradient Approximations 

As in the energy expression, there are terms in the gradient expressions that are too expensive 

to compute exactly, most notably the two electron terms. These terms are replaced with 

approximations similar to those used in the energy expression, with additional 

approximations needed for the derivative terms. 

Two electron ab intio derivative integrals. Similar approximations for derivative integrals to 

those employed for regular integrals can be used. This is because the derivative of an AO 

with angular momentum 1 is simply the sum of one orbital with angular momentum 1+1, and 

one with angular momentum 1-1. For an s orbital the derivative generates just one p orbital. 

This simple relationship allows for the application of the previously used approximations 

with little modification. 

The ab initio derivative two-electron integrals are divided into four classes: 

(AaB\AB), ( A" AIA5), (aa|A"Z?), and {A"a\BB) 

• {A"B\AB} integrals. 

< / ) = { ï " j \ V ) =Kaa,((y-,/I &/)+ 

= + ( / w l  y » ' 1 " 1  

(17) 

and ± 1 subscripts refer to the higher or lower angular momentum component 

to the derivative 
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>(A"a\ab} integrals: 

[n '»|v)=Xc».c»(v"AM 
M.v 

(VX\^) = (v,±,l\^)'S,mi(n\Ri\j} 

8 a 

. 7 1 J  

\X 

ilX^C 

(18) 

>^AA|a"5) integrals: 

(»«|i"y>= E c„A,c„,(vA|#.°y) 
j.i,v,XeA 

'"y) = Mlf„y> = ̂ (%'I^P) 

\ J Z j  
vX 

^l,y^_,y^ 

+aLÂ'+lA 

^vA,,S(i() 

v"J 

(19) 

• (AMI/?/?) integrals: 

/ie/\ 

r, - R , ") + Vu/ 7+1 ri "Rj| n ) = 
n n 

(20) 

One electron ab initio derivative integrals: V;,\ 

8a \2 
AW 

v * y 

8a M+1y 

V % y 

/eA 

/eA 

2aA--,y^_,/ 

y A..9GO 
A'- J 

(21) 



www.manaraa.com

97 

Two electron EFP derivative integrals. EFP derivatives are of the following types: 

(A4|/^)and(A4|a*a). 

» (ABb | AZ?) integrals: 

j) 
= I',!,Xc»AAv I + ( M K ,  I Ay» 

XlSmCi,C<'j((vv-'\Xj) + ̂ v^j)T° 

2 a a 

M/o 2 

K 
}^J 

I#  , +# , :  
Iâv_[ 4/ 

^ . & 
/UV_, d2 

2(% , 
+ I *••' 'S . K 

a . +an  
/'.V-l AJ 

2 a , a  

-R p,,V'(2xj 

a , +a 
V > tiv+i Xj 

/'v+i 
/"Vi Xj ^2 

a  , +a a j  M"+i lj 

^ /r; (22) 

where av, , v -) ./ R, 
In ^y 

vj 

and ± 1 subscripts refer to the higher or lower 

angular momentum component of the derivative 

>(AA\ÂB1') type integrals. 

('/!««>= I |Act) 
/.i.A.creA v'eti 

(/IV,41 ACT) = (jUvl, | ACT) - SÂCT (/v. | v^, ) 

\n. X C 

attv_, SHV_, F() Rp)lvQla 

+afiv+l \v+1 F0 ^anv+l ^P^Qio 

_ jla.SdO 

nv 

(23) 
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(ià\n-n')= X £C,,,CV«C,1...HAV) 
H,veAX'<=ll 

v | A4« ') = S,„. ( A" | «ré I " ') (24) 

: 5 jlV 
^8^ o 

2«,, ,#2 o A+1« ri'/.'tiii v 

_ jtiv.sao 
~~ x*»' 

One electron EFP derivative integrals: VA, 

I, / ) = X E v „ , (v  
veA JU'EH 

»•")  

^ v | V ' | // ' '' ) 
8a , 

V/i-1 

= v 

v * y 

8a 

v * j 

^XZ'F" IeA 
2 a R v^-i P , / 

^EZA 
re A 

vu ,/> 

(25) 

Application of these approximations gives the following expressions for derivatives of E' 

with respect to ab initio and EFP atomic centers. 
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Ab Initio Derivative: 

dE, exch 
P, 2-ti Zĵ vZjj ̂ H v̂ilvj +  ZjmjZu,ltVZjj V v y  

a 

-X X Xs", \2 Mr +•a""° )•+ I>,\ 
2-/ (JC] ~ X] ) 

2z:E>, 

xcxrx> 

+y A  r  i f  Z^/(,v,A 2rvX 

1/ 

/I fVû X^SOO , '-j rvX,SGO 

_( jv'n.SGO , rfiX.SGO \ _ rvfi",S(X) 
'Xj +/v'-y / 'Ay 

+i;i% 

+i:,i;i> 
+5,, 

2(S;c„,v;/0"+G;;œ")+I,^ 

2 (c„v;m+«i™)+S''?s, 

r^/.V, .S'tiO yrÀ/l, .SY/Y> 

Ay vy '•"]} 

+2s;x>. 1,' v.v+•siX-£-•+ I>.t - IXx 

+^; /?' + I c,„y;f" + 2C,„y;( 

+ 

V /j.veA 

y,-Z^ y, , 
Zw/ ^ A-tn m 

r/l'a 

+s.. Xhkçfà+xicjL 
K', 

- X X ,  sivi+stI[cfy;,l+ct,v;r: ) 

XXs"-
>nj 

-s* 

Z:v;'+^ Zf 

L-Z 
Y*ks*iFï*+sw9 Z/ ̂ +z„v«« -z, 

+El,,,S'^.5»{_X«s«[4(i*l™i)-(Hte)-(i»lA 

- Il,,S • % {s*« - Vi)+Sv(iC' - Vi)+2J,Vi} 
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EFP Derivative: 

-^rxxx<vw. Xj 

- izxs, Hr.vr'+cry r^. 

'2(s;i:wr+<!.''") 
+X, & + 

-21:1^, 

+: ïw'+ï, r^+ix -x;v. 
' & 

+2i;xs. 
IX^+s» 

' "Z y (x ,  -%,)  

l l /  

\ 

+st ,.4-Z 

y 

where 
/~iA,SGO \1 \1 f~* f (~* {O fXo.SGO jjiV,SGO\ 
Gij ~ 2-, 2j ^^vn^Xn ''.A j 

zieA i i ,v ,X e A  

and 

f~<Ah,SUO V \1 \ 1 C1 C C (O fXo SGO jh.X,SGO\ UV ~ Zj 2-, 2-t CAI/C^CCT»CV'YLI
ZY

ALV'" VCT j 
«eA ;i,/l,CTeA v'efl 

VII. Optimizing internally frozen EFP geometries. 

The internal geometries of EFPs are frozen, therefore the derivative of EXR with respect to 

EFP atomic positions cannot be applied directly. Instead, this derivative is used to determine 

the total translalional and rotational forces on the EFP as a whole ®7. There are six 

geometrical degrees of freedom associated with each EFP including three translational and 

three rotational components (torques). The translational force is simply the sum of each of 

the Cartesian forces described by Eq (27) to give a net force on each EFP. 
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F" = I(-V„£) (28) 

Calculation of the torques is more involved, and is described below. 

F" = Z(R6-Rco„)X(-V,£) + EI» (29) 
Ac# 

where b is an atomic center on EFP B, and Tb is the point torque on b. 

The first part of Eq (29) is a straightforward cross product with the Cartesian gradient. The 

second part, xb is the point torque correction about an AO center due to the anisotropy of p,d, 

etc. orbitals; the torque on B about point b. 

T, = (r, - rj x (V )̂ = r„ x (V,̂ ) (30) 

The first term of Eq (26), the derivative of EXR with respect to EFP atomic centers, is used to 

illustrate this procedure. 

i;, X (V,„(<y|y>) = X((N ,j\ij) + (ij\iV ,j)) = 2r,„ x ((<V»y|iy)) 

= l2C„A,x((/V1v'|y» (31) 
v'eA 

= £ X E 2C„C„,,C1,C„.,r1,x(MV»v'|Â(T'> 
v'cr'e/JtieA 

rha x (jUVav'|A(J') has the following Cartesian components: 

k x (^V,v'|Acr')] =(^ 

x(/fVX|Ac')]y =(z, - zj/p 

k x (^v'| A(T')1 = (x* Ai 

dv' 

dv' 

X ( j ' J - ( z h - z a ) ( v  
dv; 

dv; 
/Ur'j 

A<j '  

(32) 

The integrals in the torque expression are approximated as in the Cartesian gradient 

expressions. 
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VIII. Conclusions. 

An expression has been derived and coded for the ab initio-EFP exchange repulsion 

interaction which is evaluated using optimized orbital s obtained by including the ab initio-

EFP exchange repulsion Fock operator in the orbital optimzation procedure. This use of this 

operator has allowed us to derive an efficient gradient expression without resorting to the use 

of expensive coupled perturbed Hartree Fock type equations. This gradient expression has 

been derived and presented here. Also reported is an approximate ab intio-EFP exchange 

repulsion gradient, which utilizes the approximations established in the energy evaluation. 

This should provide a cheap, but accurate alternative to fully ab intio solvent studies, 

especially in cases where continuum models or simple potentials lack sufficient accuracy. 
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CHAPTER 6: GENERAL CONCLUSIONS 

In studying a chemical problem with electronic structure theory the method must be 

well matched to the chemistry of the system. The two applications projects in this thesis 

focused on locating equilibrium geometries of multireference systems using FORS-MCSCF 

wave functions. Both SiC3 and Si2C2 have low energy linear and rhombic structures, with the 

SiC3 linear structure slightly more stable than the most stable rhombic structure; the reverse is 

true for the Si2C2 system. A similar study of the SiC3 and Si2C2 anions would enable further 

comparisons with photoelectron spectroscopy studies of these species. 

The Si(100)-(2xl) system is shown to range from nearly closed shell to very multi-

reference, depending upon its location on the potential energy surface. The degree of multi-

reference character is closely related to the number of under-coordinated surface dimer 

silicons. When the surface is saturated these dimer silicons are no longer under-coordinated. 

Comparisons with DFT-based calculations on the surface indicate that the MRMP2 and DFT 

results are similar when the surface is adequately described with a single-reference wave 

function. Both levels of theory predict the most favorable adsorption geometry to involve the 

acetylene directly on top of and parallel to a single surface dimer. 

The most stable adsorption geometry of acetylene on the Si(100)-(2xl) surface is 

presented; however, it remains of interest to determine the pathway by which acetylene reacts 

with the surface. Likewise, the favored adsorption configuration of several acetylenes near 

each other on the surface could shed further light on experimental studies of this system, and 

the discrepancy between theory and experiment. 

Examination of the size consistency of MRMP2 serves as a reminder of the 

importance of understanding the limitations of any computational method, not simply 

treating it as a black box. It also should serve to caution against dismissing small size 

consistency errors as unimportant, as these errors grow as the size of the system grows and 

often in a greater than linear fashion. 

Finally, an ab initio/EFP exchange repulsion energy is implemented for the EFP 

method, which evaluates the energy using optimized molecular orbital s. It will replace the 

fitted term which currently includes the exchange repulsion interaction. Energy gradients are 



www.manaraa.com

105 

derived with respect to both ab intio and EFP atomic positions, as well as approximate 

expressions for each of these gradients. This will allow an efficient gradient to be 

implemented for a general EFP method. Coding this gradient is the next logical step; having 

an available code is necessary requisite to using this method to study reactions in interesting 

non-aqueous solvents. 

The range of topics included in this thesis spans quantum chemistry quite broadly, 

indicating not a lack of focus, but a breadth of interest in the many subjects encompassed by 

the field of quantum chemistry. 
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